crosvm/arch/src/lib.rs

392 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
pub mod android;
pub mod fdt;
pub mod pstore;
pub mod serial;
use std::collections::BTreeMap;
use std::error::Error as StdError;
use std::fmt::{self, Display};
use std::fs::File;
use std::io::{self, Read, Seek, SeekFrom};
use std::os::unix::io::AsRawFd;
use std::path::PathBuf;
use std::sync::Arc;
use devices::split_irqchip_common::GsiRelay;
use devices::virtio::VirtioDevice;
use devices::{
Bus, BusDevice, BusError, PciAddress, PciDevice, PciDeviceError, PciInterruptPin, PciRoot,
ProxyDevice,
};
use io_jail::Minijail;
use kvm::{IoeventAddress, Kvm, Vcpu, Vm};
use resources::SystemAllocator;
use sync::Mutex;
use sys_util::{syslog, EventFd, GuestAddress, GuestMemory, GuestMemoryError};
use vm_control::VmIrqRequestSocket;
pub use serial::{
add_serial_devices, get_serial_cmdline, set_default_serial_parameters, GetSerialCmdlineError,
SerialHardware, SerialParameters, SerialType, SERIAL_ADDR,
};
pub enum VmImage {
Kernel(File),
Bios(File),
}
#[derive(Clone)]
pub struct Pstore {
pub path: PathBuf,
pub size: u32,
}
/// Holds the pieces needed to build a VM. Passed to `build_vm` in the `LinuxArch` trait below to
/// create a `RunnableLinuxVm`.
pub struct VmComponents {
pub memory_size: u64,
pub vcpu_count: u32,
pub vcpu_affinity: Vec<usize>,
pub vm_image: VmImage,
pub android_fstab: Option<File>,
pub pstore: Option<Pstore>,
pub initrd_image: Option<File>,
pub extra_kernel_params: Vec<String>,
pub wayland_dmabuf: bool,
}
/// Holds the elements needed to run a Linux VM. Created by `build_vm`.
pub struct RunnableLinuxVm {
pub vm: Vm,
pub kvm: Kvm,
pub resources: SystemAllocator,
pub exit_evt: EventFd,
pub vcpus: Vec<Vcpu>,
pub vcpu_affinity: Vec<usize>,
pub irq_chip: Option<File>,
pub split_irqchip: Option<(Arc<Mutex<devices::Pic>>, Arc<Mutex<devices::Ioapic>>)>,
pub gsi_relay: Option<Arc<GsiRelay>>,
pub io_bus: Bus,
pub mmio_bus: Bus,
pub pid_debug_label_map: BTreeMap<u32, String>,
pub suspend_evt: EventFd,
}
/// The device and optional jail.
pub struct VirtioDeviceStub {
pub dev: Box<dyn VirtioDevice>,
pub jail: Option<Minijail>,
}
/// Trait which is implemented for each Linux Architecture in order to
/// set up the memory, cpus, and system devices and to boot the kernel.
pub trait LinuxArch {
type Error: StdError;
/// Takes `VmComponents` and generates a `RunnableLinuxVm`.
///
/// # Arguments
///
/// * `components` - Parts to use to build the VM.
/// * `split_irqchip` - whether to use a split IRQ chip (i.e. userspace PIT/PIC/IOAPIC)
/// * `serial_parameters` - definitions for how the serial devices should be configured.
/// * `create_devices` - Function to generate a list of devices.
fn build_vm<F, E>(
components: VmComponents,
split_irqchip: bool,
ioapic_device_socket: VmIrqRequestSocket,
serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>,
serial_jail: Option<Minijail>,
create_devices: F,
) -> Result<RunnableLinuxVm, Self::Error>
where
F: FnOnce(
&GuestMemory,
&mut Vm,
&mut SystemAllocator,
&EventFd,
) -> Result<Vec<(Box<dyn PciDevice>, Option<Minijail>)>, E>,
E: StdError + 'static;
}
/// Errors for device manager.
#[derive(Debug)]
pub enum DeviceRegistrationError {
/// Could not allocate IO space for the device.
AllocateIoAddrs(PciDeviceError),
/// Could not allocate device address space for the device.
AllocateDeviceAddrs(PciDeviceError),
/// Could not allocate an IRQ number.
AllocateIrq,
// Unable to create a pipe.
CreatePipe(sys_util::Error),
// Unable to create serial device from serial parameters
CreateSerialDevice(serial::Error),
/// Could not clone an event fd.
EventFdClone(sys_util::Error),
/// Could not create an event fd.
EventFdCreate(sys_util::Error),
/// Missing a required serial device.
MissingRequiredSerialDevice(u8),
/// Could not add a device to the mmio bus.
MmioInsert(BusError),
/// Failed to register ioevent with VM.
RegisterIoevent(sys_util::Error),
/// Failed to register irq eventfd with VM.
RegisterIrqfd(sys_util::Error),
/// Failed to initialize proxy device for jailed device.
ProxyDeviceCreation(devices::ProxyError),
/// Appending to kernel command line failed.
Cmdline(kernel_cmdline::Error),
/// No more IRQs are available.
IrqsExhausted,
/// No more MMIO space available.
AddrsExhausted,
/// Could not register PCI device capabilities.
RegisterDeviceCapabilities(PciDeviceError),
}
impl Display for DeviceRegistrationError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::DeviceRegistrationError::*;
match self {
AllocateIoAddrs(e) => write!(f, "Allocating IO addresses: {}", e),
AllocateDeviceAddrs(e) => write!(f, "Allocating device addresses: {}", e),
AllocateIrq => write!(f, "Allocating IRQ number"),
CreatePipe(e) => write!(f, "failed to create pipe: {}", e),
CreateSerialDevice(e) => write!(f, "failed to create serial device: {}", e),
Cmdline(e) => write!(f, "unable to add device to kernel command line: {}", e),
EventFdClone(e) => write!(f, "failed to clone eventfd: {}", e),
EventFdCreate(e) => write!(f, "failed to create eventfd: {}", e),
MissingRequiredSerialDevice(n) => write!(f, "missing required serial device {}", n),
MmioInsert(e) => write!(f, "failed to add to mmio bus: {}", e),
RegisterIoevent(e) => write!(f, "failed to register ioevent to VM: {}", e),
RegisterIrqfd(e) => write!(f, "failed to register irq eventfd to VM: {}", e),
ProxyDeviceCreation(e) => write!(f, "failed to create proxy device: {}", e),
IrqsExhausted => write!(f, "no more IRQs are available"),
AddrsExhausted => write!(f, "no more addresses are available"),
RegisterDeviceCapabilities(e) => {
write!(f, "could not register PCI device capabilities: {}", e)
}
}
}
}
/// Creates a root PCI device for use by this Vm.
pub fn generate_pci_root(
devices: Vec<(Box<dyn PciDevice>, Option<Minijail>)>,
gsi_relay: &mut Option<GsiRelay>,
mmio_bus: &mut Bus,
resources: &mut SystemAllocator,
vm: &mut Vm,
) -> Result<
(
PciRoot,
Vec<(PciAddress, u32, PciInterruptPin)>,
BTreeMap<u32, String>,
),
DeviceRegistrationError,
> {
let mut root = PciRoot::new();
let mut pci_irqs = Vec::new();
let mut pid_labels = BTreeMap::new();
for (dev_idx, (mut device, jail)) in devices.into_iter().enumerate() {
// Auto assign PCI device numbers starting from 1
let address = PciAddress {
bus: 0,
dev: 1 + dev_idx as u8,
func: 0,
};
device.assign_address(address);
let mut keep_fds = device.keep_fds();
syslog::push_fds(&mut keep_fds);
let irqfd = EventFd::new().map_err(DeviceRegistrationError::EventFdCreate)?;
let irq_resample_fd = EventFd::new().map_err(DeviceRegistrationError::EventFdCreate)?;
let irq_num = resources
.allocate_irq()
.ok_or(DeviceRegistrationError::AllocateIrq)? as u32;
let pci_irq_pin = match dev_idx % 4 {
0 => PciInterruptPin::IntA,
1 => PciInterruptPin::IntB,
2 => PciInterruptPin::IntC,
3 => PciInterruptPin::IntD,
_ => unreachable!(), // Obviously not possible, but the compiler is not smart enough.
};
if let Some(relay) = gsi_relay {
relay.register_irqfd_resample(
irqfd
.try_clone()
.map_err(DeviceRegistrationError::EventFdClone)?,
irq_resample_fd
.try_clone()
.map_err(DeviceRegistrationError::EventFdClone)?,
irq_num as usize,
);
} else {
vm.register_irqfd_resample(&irqfd, &irq_resample_fd, irq_num)
.map_err(DeviceRegistrationError::RegisterIrqfd)?;
}
keep_fds.push(irqfd.as_raw_fd());
keep_fds.push(irq_resample_fd.as_raw_fd());
device.assign_irq(irqfd, irq_resample_fd, irq_num, pci_irq_pin);
pci_irqs.push((address, irq_num, pci_irq_pin));
let ranges = device
.allocate_io_bars(resources)
.map_err(DeviceRegistrationError::AllocateIoAddrs)?;
let device_ranges = device
.allocate_device_bars(resources)
.map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
device
.register_device_capabilities()
.map_err(DeviceRegistrationError::RegisterDeviceCapabilities)?;
for (event, addr, datamatch) in device.ioeventfds() {
let io_addr = IoeventAddress::Mmio(addr);
vm.register_ioevent(&event, io_addr, datamatch)
.map_err(DeviceRegistrationError::RegisterIoevent)?;
keep_fds.push(event.as_raw_fd());
}
let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
let proxy = ProxyDevice::new(device, &jail, keep_fds)
.map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
pid_labels.insert(proxy.pid() as u32, proxy.debug_label());
Arc::new(Mutex::new(proxy))
} else {
device.on_sandboxed();
Arc::new(Mutex::new(device))
};
root.add_device(address, arced_dev.clone());
for range in &ranges {
mmio_bus
.insert(arced_dev.clone(), range.0, range.1, true)
.map_err(DeviceRegistrationError::MmioInsert)?;
}
for range in &device_ranges {
mmio_bus
.insert(arced_dev.clone(), range.0, range.1, true)
.map_err(DeviceRegistrationError::MmioInsert)?;
}
}
Ok((root, pci_irqs, pid_labels))
}
/// Errors for image loading.
#[derive(Debug)]
pub enum LoadImageError {
BadAlignment(u64),
Seek(io::Error),
ImageSizeTooLarge(u64),
ReadToMemory(GuestMemoryError),
}
impl Display for LoadImageError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::LoadImageError::*;
match self {
BadAlignment(a) => write!(f, "Alignment not a power of two: {}", a),
Seek(e) => write!(f, "Seek failed: {}", e),
ImageSizeTooLarge(size) => write!(f, "Image size too large: {}", size),
ReadToMemory(e) => write!(f, "Reading image into memory failed: {}", e),
}
}
}
/// Load an image from a file into guest memory.
///
/// # Arguments
///
/// * `guest_mem` - The memory to be used by the guest.
/// * `guest_addr` - The starting address to load the image in the guest memory.
/// * `max_size` - The amount of space in bytes available in the guest memory for the image.
/// * `image` - The file containing the image to be loaded.
///
/// The size in bytes of the loaded image is returned.
pub fn load_image<F>(
guest_mem: &GuestMemory,
image: &mut F,
guest_addr: GuestAddress,
max_size: u64,
) -> Result<usize, LoadImageError>
where
F: Read + Seek + AsRawFd,
{
let size = image.seek(SeekFrom::End(0)).map_err(LoadImageError::Seek)?;
if size > usize::max_value() as u64 || size > max_size {
return Err(LoadImageError::ImageSizeTooLarge(size));
}
// This is safe due to the bounds check above.
let size = size as usize;
image
.seek(SeekFrom::Start(0))
.map_err(LoadImageError::Seek)?;
guest_mem
.read_to_memory(guest_addr, image, size)
.map_err(LoadImageError::ReadToMemory)?;
Ok(size)
}
/// Load an image from a file into guest memory at the highest possible address.
///
/// # Arguments
///
/// * `guest_mem` - The memory to be used by the guest.
/// * `image` - The file containing the image to be loaded.
/// * `min_guest_addr` - The minimum address of the start of the image.
/// * `max_guest_addr` - The address to load the last byte of the image.
/// * `align` - The minimum alignment of the start address of the image in bytes
/// (must be a power of two).
///
/// The guest address and size in bytes of the loaded image are returned.
pub fn load_image_high<F>(
guest_mem: &GuestMemory,
image: &mut F,
min_guest_addr: GuestAddress,
max_guest_addr: GuestAddress,
align: u64,
) -> Result<(GuestAddress, usize), LoadImageError>
where
F: Read + Seek + AsRawFd,
{
if !align.is_power_of_two() {
return Err(LoadImageError::BadAlignment(align));
}
let max_size = max_guest_addr.offset_from(min_guest_addr) & !(align - 1);
let size = image.seek(SeekFrom::End(0)).map_err(LoadImageError::Seek)?;
if size > usize::max_value() as u64 || size > max_size {
return Err(LoadImageError::ImageSizeTooLarge(size));
}
image
.seek(SeekFrom::Start(0))
.map_err(LoadImageError::Seek)?;
// Load image at the maximum aligned address allowed.
// The subtraction cannot underflow because of the size checks above.
let guest_addr = GuestAddress((max_guest_addr.offset() - size) & !(align - 1));
// This is safe due to the bounds check above.
let size = size as usize;
guest_mem
.read_to_memory(guest_addr, image, size)
.map_err(LoadImageError::ReadToMemory)?;
Ok((guest_addr, size))
}