data_model: add volatile_memory module for volatile access

This includes both VolatileRef, for accessing DataInit, and
VolatileSlice, for accessing bulk raw memory.

BUG=None
TEST=cargo test

Change-Id: I356c7e6f05361fa711dc91555f68e4323667884a
Reviewed-on: https://chromium-review.googlesource.com/547050
Commit-Ready: Zach Reizner <zachr@chromium.org>
Tested-by: Zach Reizner <zachr@chromium.org>
Reviewed-by: Zach Reizner <zachr@chromium.org>
This commit is contained in:
Zach Reizner 2017-06-23 17:24:13 -07:00 committed by chrome-bot
parent 0d4f8dff72
commit 34959d42c1
2 changed files with 527 additions and 0 deletions

View file

@ -44,3 +44,6 @@ data_init_type!(isize);
pub mod endian;
pub use endian::*;
pub mod volatile_memory;
pub use volatile_memory::*;

View file

@ -0,0 +1,524 @@
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Types for volatile access to memory.
//!
//! Two of the core rules for safe rust is no data races and no aliased mutable references.
//! `VolatileRef` and `VolatileSlice`, along with types that produce those which implement
//! `VolatileMemory`, allow us to sidestep that rule by wrapping pointers that absolutely have to be
//! accessed volatile. Some systems really do need to operate on shared memory and can't have the
//! compiler reordering or eliding access because it has no visibility into what other systems are
//! doing with that hunk of memory.
//!
//! For the purposes of maintaining safety, volatile memory has some rules of its own:
//! 1. No references or slices to volatile memory (`&` or `&mut`).
//! 2. Access should always been done with a volatile read or write.
//! The First rule is because having references of any kind to memory considered volatile would
//! violate pointer aliasing. The second is because unvolatile accesses are inherently undefined if
//! done concurrently without synchronization. With volatile access we know that the compiler has
//! not reordered or elided the access.
use std::io::Result as IoResult;
use std::io::{Read, Write};
use std::marker::PhantomData;
use std::mem::size_of;
use std::ptr::{write_volatile, read_volatile};
use std::result;
use std::fmt;
use std::slice::{from_raw_parts, from_raw_parts_mut};
use DataInit;
#[derive(Eq, PartialEq, Debug)]
pub enum VolatileMemoryError {
/// `addr` is out of bounds of the volatile memory slice.
OutOfBounds { addr: usize },
/// Taking a slice at `base` with `offset` would overflow `usize`.
Overflow { base: usize, offset: usize },
}
impl fmt::Display for VolatileMemoryError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
&VolatileMemoryError::OutOfBounds { addr } => {
write!(f, "address 0x{:x} is out of bounds", addr)
}
&VolatileMemoryError::Overflow { base, offset } => {
write!(f,
"address 0x{:x} offset by 0x{:x} would overflow",
base,
offset)
}
}
}
}
pub type VolatileMemoryResult<T> = result::Result<T, VolatileMemoryError>;
use VolatileMemoryError as Error;
type Result<T> = VolatileMemoryResult<T>;
/// Convenience function for computing `base + offset` which returns
/// `Err(VolatileMemoryError::Overflow)` instead of panicking in the case `base + offset` exceeds
/// `usize::MAX`.
///
/// # Examples
///
/// ```
/// # use data_model::*;
/// # fn get_slice(offset: usize, count: usize) -> VolatileMemoryResult<()> {
/// let mem_end = calc_offset(offset, count)?;
/// if mem_end > 100 {
/// return Err(VolatileMemoryError::OutOfBounds{addr: mem_end});
/// }
/// # Ok(())
/// # }
/// ```
pub fn calc_offset(base: usize, offset: usize) -> Result<usize> {
match base.checked_add(offset) {
None => {
Err(Error::Overflow {
base: base,
offset: offset,
})
}
Some(m) => Ok(m),
}
}
/// Trait for types that support raw volatile access to their data.
pub trait VolatileMemory {
/// Gets a slice of memory at `offset` that is `count` bytes in length and supports volatile
/// access.
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice>;
/// Gets a `VolatileRef` at `offset`.
fn get_ref<T: DataInit>(&self, offset: usize) -> Result<VolatileRef<T>> {
let slice = self.get_slice(offset, size_of::<T>())?;
Ok(VolatileRef {
addr: slice.addr as *mut T,
phantom: PhantomData,
})
}
}
impl<'a> VolatileMemory for &'a mut [u8] {
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
let mem_end = calc_offset(offset, count)?;
if mem_end > self.len() {
return Err(Error::OutOfBounds { addr: mem_end });
}
Ok(unsafe { VolatileSlice::new((self.as_ptr() as usize + offset) as *mut _, count) })
}
}
/// A slice of raw memory that supports volatile access.
#[derive(Debug)]
pub struct VolatileSlice<'a> {
addr: *mut u8,
size: usize,
phantom: PhantomData<&'a u8>,
}
impl<'a> VolatileSlice<'a> {
/// Creates a slice of raw memory that must support volatile access.
///
/// To use this safely, the caller must guarantee that the memory at `addr` is `size` bytes long
/// and is available for the duration of the lifetime of the new `VolatileSlice`. The caller
/// must also guarantee that all other users of the given chunk of memory are using volatile
/// accesses.
pub unsafe fn new(addr: *mut u8, size: usize) -> VolatileSlice<'a> {
VolatileSlice {
addr: addr,
size: size,
phantom: PhantomData,
}
}
/// Gets the address of this slice's memory.
pub fn as_ptr(&self) -> *mut u8 {
self.addr
}
/// Gets the size of this slice.
pub fn size(&self) -> usize {
self.size
}
/// Attempt to write all data from memory to a writable object and returns how many bytes were
/// actually written on success.
///
/// # Arguments
/// * `w` - Write from memory to `w`.
///
/// # Examples
///
/// * Write some bytes to /dev/null
///
/// ```
/// # use std::fs::File;
/// # use std::path::Path;
/// # use data_model::VolatileMemory;
/// # fn test_write_null() -> Result<(), ()> {
/// # let mut mem = [0u8; 32];
/// # let mem_ref = &mut mem[..];
/// # let vslice = mem_ref.get_slice(0, 32).map_err(|_| ())?;
/// let mut file = File::open(Path::new("/dev/null")).map_err(|_| ())?;
/// vslice.write_to(&mut file).map_err(|_| ())?;
/// # Ok(())
/// # }
/// ```
pub fn write_to<T: Write>(&self, w: &mut T) -> IoResult<usize> {
w.write(unsafe { self.as_slice() })
}
/// Writes all data from memory to a writable object via `Write::write_all`.
///
/// # Arguments
/// * `w` - Write from memory to `w`.
///
/// # Examples
///
/// * Write some bytes to /dev/null
///
/// ```
/// # use std::fs::File;
/// # use std::path::Path;
/// # use data_model::VolatileMemory;
/// # fn test_write_null() -> Result<(), ()> {
/// # let mut mem = [0u8; 32];
/// # let mem_ref = &mut mem[..];
/// # let vslice = mem_ref.get_slice(0, 32).map_err(|_| ())?;
/// let mut file = File::open(Path::new("/dev/null")).map_err(|_| ())?;
/// vslice.write_all_to(&mut file).map_err(|_| ())?;
/// # Ok(())
/// # }
/// ```
pub fn write_all_to<T: Write>(&self, w: &mut T) -> IoResult<()> {
w.write_all(unsafe { self.as_slice() })
}
/// Reads up to this slice's size to memory from a readable object and returns how many bytes
/// were actually read on success.
///
/// # Arguments
/// * `r` - Read to `r` to memory.
///
/// # Examples
///
/// * Read some bytes to /dev/null
///
/// ```
/// # use std::fs::File;
/// # use std::path::Path;
/// # use data_model::VolatileMemory;
/// # fn test_write_null() -> Result<(), ()> {
/// # let mut mem = [0u8; 32];
/// # let mem_ref = &mut mem[..];
/// # let vslice = mem_ref.get_slice(0, 32).map_err(|_| ())?;
/// let mut file = File::open(Path::new("/dev/null")).map_err(|_| ())?;
/// vslice.read_from(&mut file).map_err(|_| ())?;
/// # Ok(())
/// # }
/// ```
pub fn read_from<T: Read>(&self, r: &mut T) -> IoResult<usize> {
r.read(unsafe { self.as_mut_slice() })
}
/// Read exactly this slice's size into memory from to a readable object via `Read::read_exact`.
///
/// # Arguments
/// * `r` - Read to `r` to memory.
///
/// # Examples
///
/// * Read some bytes to /dev/null
///
/// ```
/// # use std::fs::File;
/// # use std::path::Path;
/// # use data_model::VolatileMemory;
/// # fn test_write_null() -> Result<(), ()> {
/// # let mut mem = [0u8; 32];
/// # let mem_ref = &mut mem[..];
/// # let vslice = mem_ref.get_slice(0, 32).map_err(|_| ())?;
/// let mut file = File::open(Path::new("/dev/null")).map_err(|_| ())?;
/// vslice.read_from(&mut file).map_err(|_| ())?;
/// # Ok(())
/// # }
/// ```
pub fn read_exact_from<T: Read>(&self, r: &mut T) -> IoResult<()> {
r.read_exact(unsafe { self.as_mut_slice() })
}
// These function are private and only used for the read/write functions. It is not valid in
// general to take slices of volatile memory.
unsafe fn as_slice(&self) -> &[u8] {
from_raw_parts(self.addr, self.size)
}
unsafe fn as_mut_slice(&self) -> &mut [u8] {
from_raw_parts_mut(self.addr, self.size)
}
}
impl<'a> VolatileMemory for VolatileSlice<'a> {
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
let mem_end = calc_offset(offset, count)?;
if mem_end > self.size {
return Err(Error::OutOfBounds { addr: mem_end });
}
Ok(VolatileSlice {
addr: (self.addr as usize + offset) as *mut _,
size: count,
phantom: PhantomData,
})
}
}
/// A memory location that supports volatile access of a `T`.
///
/// # Examples
///
/// ```
/// # use data_model::VolatileRef;
/// let mut v = 5u32;
/// assert_eq!(v, 5);
/// let v_ref = unsafe { VolatileRef::new(&mut v as *mut u32) };
/// assert_eq!(v_ref.load(), 5);
/// v_ref.store(500);
/// assert_eq!(v, 500);
#[derive(Debug)]
pub struct VolatileRef<'a, T: DataInit>
where T: 'a
{
addr: *mut T,
phantom: PhantomData<&'a T>,
}
impl<'a, T: DataInit> VolatileRef<'a, T> {
/// Creates a reference to raw memory that must support volatile access of `T` sized chunks.
///
/// To use this safely, the caller must guarantee that the memory at `addr` is big enough for a
/// `T` and is available for the duration of the lifetime of the new `VolatileRef`. The caller
/// must also guarantee that all other users of the given chunk of memory are using volatile
/// accesses.
pub unsafe fn new(addr: *mut T) -> VolatileRef<'a, T> {
VolatileRef {
addr: addr,
phantom: PhantomData,
}
}
/// Gets the address of this slice's memory.
pub fn as_ptr(&self) -> *mut T {
self.addr
}
/// Gets the size of this slice.
///
/// # Examples
///
/// ```
/// # use std::mem::size_of;
/// # use data_model::VolatileRef;
/// let v_ref = unsafe { VolatileRef::new(0 as *mut u32) };
/// assert_eq!(v_ref.size(), size_of::<u32>());
/// ```
pub fn size(&self) -> usize {
size_of::<T>()
}
/// Does a volatile write of the value `v` to the address of this ref.
#[inline(always)]
pub fn store(&self, v: T) {
unsafe { write_volatile(self.addr, v) };
}
/// Does a volatile read of the value at the address of this ref.
#[inline(always)]
pub fn load(&self) -> T {
// For the purposes of demonstrating why read_volatile is necessary, try replacing the code
// in this function with the commented code below and running `cargo test --release`.
// unsafe { *(self.addr as *const T) }
unsafe { read_volatile(self.addr) }
}
/// Converts this `T` reference to a raw slice with the same size and address.
pub fn to_slice(&self) -> VolatileSlice<'a> {
unsafe { VolatileSlice::new(self.addr as *mut u8, size_of::<T>()) }
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::Arc;
use std::thread::{spawn, sleep};
use std::time::Duration;
#[derive(Clone)]
struct VecMem {
mem: Arc<Vec<u8>>,
}
impl VecMem {
fn new(size: usize) -> VecMem {
let mut mem = Vec::new();
mem.resize(size, 0);
VecMem { mem: Arc::new(mem) }
}
}
impl VolatileMemory for VecMem {
fn get_slice(&self, offset: usize, count: usize) -> Result<VolatileSlice> {
let mem_end = calc_offset(offset, count)?;
if mem_end > self.mem.len() {
return Err(Error::OutOfBounds { addr: mem_end });
}
Ok(unsafe {
VolatileSlice::new((self.mem.as_ptr() as usize + offset) as *mut _, count)
})
}
}
#[test]
fn ref_store() {
let mut a = [0u8; 1];
{
let a_ref = &mut a[..];
let v_ref = a_ref.get_ref(0).unwrap();
v_ref.store(2u8);
}
assert_eq!(a[0], 2);
}
#[test]
fn ref_load() {
let mut a = [5u8; 1];
{
let a_ref = &mut a[..];
let c = {
let v_ref = a_ref.get_ref::<u8>(0).unwrap();
assert_eq!(v_ref.load(), 5u8);
v_ref
};
// To make sure we can take a v_ref out of the scope we made it in:
c.load();
// but not too far:
// c
} //.load()
;
}
#[test]
fn ref_to_slice() {
let mut a = [1u8; 5];
let a_ref = &mut a[..];
let v_ref = a_ref.get_ref(1).unwrap();
v_ref.store(0x12345678u32);
let ref_slice = v_ref.to_slice();
assert_eq!(v_ref.as_ptr() as usize, ref_slice.as_ptr() as usize);
assert_eq!(v_ref.size(), ref_slice.size());
}
#[test]
fn observe_mutate() {
let a = VecMem::new(1);
let a_clone = a.clone();
let v_ref = a.get_ref::<u8>(0).unwrap();
v_ref.store(99);
spawn(move || {
sleep(Duration::from_millis(10));
let clone_v_ref = a_clone.get_ref::<u8>(0).unwrap();
clone_v_ref.store(0);
});
// Technically this is a race condition but we have to observe the v_ref's value changing
// somehow and this helps to ensure the sleep actually happens before the store rather then
// being reordered by the compiler.
assert_eq!(v_ref.load(), 99);
// Granted we could have a machine that manages to perform this many volatile loads in the
// amount of time the spawned thread sleeps, but the most likely reason the retry limit will
// get reached is because v_ref.load() is not actually performing the required volatile read
// or v_ref.store() is not doing a volatile write. A timer based solution was avoided
// because that might use a syscall which could hint the optimizer to reload v_ref's pointer
// regardless of volatile status. Note that we use a longer retry duration for optimized
// builds.
#[cfg(debug_assertions)]
const RETRY_MAX: u64 = 500_000_000;
#[cfg(not(debug_assertions))]
const RETRY_MAX: u64 = 10_000_000_000;
let mut retry = 0;
while v_ref.load() == 99 && retry < RETRY_MAX {
retry += 1;
}
assert_ne!(retry, RETRY_MAX, "maximum retry exceeded");
assert_eq!(v_ref.load(), 0);
}
#[test]
fn slice_size() {
let a = VecMem::new(100);
let s = a.get_slice(0, 27).unwrap();
assert_eq!(s.size(), 27);
let s = a.get_slice(34, 27).unwrap();
assert_eq!(s.size(), 27);
let s = s.get_slice(20, 5).unwrap();
assert_eq!(s.size(), 5);
}
#[test]
fn slice_overflow_error() {
use std::usize::MAX;
let a = VecMem::new(1);
let res = a.get_slice(MAX, 1).unwrap_err();
assert_eq!(res,
Error::Overflow {
base: MAX,
offset: 1,
});
}
#[test]
fn slice_oob_error() {
let a = VecMem::new(100);
a.get_slice(50, 50).unwrap();
let res = a.get_slice(55, 50).unwrap_err();
assert_eq!(res, Error::OutOfBounds { addr: 105 });
}
#[test]
fn ref_overflow_error() {
use std::usize::MAX;
let a = VecMem::new(1);
let res = a.get_ref::<u8>(MAX).unwrap_err();
assert_eq!(res,
Error::Overflow {
base: MAX,
offset: 1,
});
}
#[test]
fn ref_oob_error() {
let a = VecMem::new(100);
a.get_ref::<u8>(99).unwrap();
let res = a.get_ref::<u16>(99).unwrap_err();
assert_eq!(res, Error::OutOfBounds { addr: 101 });
}
#[test]
fn ref_oob_too_large() {
let a = VecMem::new(3);
let res = a.get_ref::<u32>(0).unwrap_err();
assert_eq!(res, Error::OutOfBounds { addr: 4 });
}
}