// Copyright 2017 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #![cfg(any(target_arch = "x86", target_arch = "x86_64"))] // Test applies to whpx only. #![cfg(feature = "whpx")] use std::sync::atomic::{AtomicU16, Ordering}; use hypervisor::*; use vm_memory::{GuestAddress, GuestMemory}; // This test case is for the following scenario: // Test sets up a guest memory instruction page, such that an instruction // straddles across a page boundary. That is, the bytes for the instruction are // split between end of first page and start of the next page. This triggers // WHV_EMULATOR to perform an "MMIO" load which is just a memory read from the // second page. #[test] fn test_whpx_mmio_fetch_memory() { use hypervisor::whpx::*; /* 0x0000000000000000: 67 88 03 mov byte ptr [ebx], al 0x0000000000000003: 67 8A 01 mov al, byte ptr [ecx] 0x000000000000000a: F4 hlt */ // Start executing the following instructions on the last byte of the page // so that the instruction emulator needs to fetch it from the next page // first. // If `code` or `load_addr` is changed, the memory load on line 89 will need // to be updated. let code = [0x67, 0x88, 0x03, 0x67, 0x8a, 0x01, 0xf4]; let load_addr = GuestAddress(0x0fff); let mem_size = 0x2000; let guest_mem = GuestMemory::new(&[(GuestAddress(0), mem_size)]).expect("failed to create guest mem"); guest_mem .write_at_addr(&code[..], load_addr) .expect("failed to write to guest memory"); if !Whpx::is_enabled() { panic!("whpx not enabled!"); } let whpx = Whpx::new().expect("failed to create whpx"); let vm = WhpxVm::new(&whpx, 1, guest_mem, CpuId::new(0), false).expect("failed to create vm"); let mut vcpu = vm.create_vcpu(0).expect("new vcpu failed"); let mut vcpu_sregs = vcpu.get_sregs().expect("get sregs failed"); vcpu_sregs.cs.base = 0; vcpu_sregs.cs.selector = 0; vcpu.set_sregs(&vcpu_sregs).expect("set sregs failed"); let mut vcpu_regs = Regs::default(); vcpu_regs.rip = load_addr.offset() as u64; vcpu_regs.rflags = 2; vcpu_regs.rax = 0x33; vcpu_regs.rbx = 0x3000; vcpu_regs.rcx = 0x3010; vcpu.set_regs(&vcpu_regs).expect("set regs failed"); // Ensure we get exactly 2 exits for the mmio read and write. let exits = AtomicU16::new(0); // Also, ensure that we have 2 "mmio" reads, one for reading execution page // and the second one for unmapped data page. let memory_reads = AtomicU16::new(0); // And ensure that 1 write is performed. let memory_writes = AtomicU16::new(0); let run_handle = vcpu.take_run_handle(None).unwrap(); loop { match vcpu.run(&run_handle).expect("run failed") { VcpuExit::Mmio => { exits.fetch_add(1, Ordering::SeqCst); vcpu.handle_mmio(&mut |IoParams { address, size, operation, }| { match operation { IoOperation::Read => { memory_reads.fetch_add(1, Ordering::SeqCst); match (address, size) { // First MMIO read from the WHV_EMULATOR asks to // load the first 8 bytes of a new execution // page, when an instruction crosses page // boundary. // Return the rest of instructions that are // supposed to be on the second page. (0x1000, 8) => { // Ensure this instruction is the first read // in the sequence. assert_eq!(memory_reads.load(Ordering::SeqCst), 1); Some([0x88, 0x03, 0x67, 0x8a, 0x01, 0xf4, 0, 0]) } // Second MMIO read is a regular read from an // unmapped memory. (0x3010, 1) => Some([0x66, 0, 0, 0, 0, 0, 0, 0]), _ => { panic!("invalid address({:#x})/size({})", address, size) } } } IoOperation::Write { data } => { assert_eq!(address, 0x3000); assert_eq!(data[0], 0x33); assert_eq!(size, 1); memory_writes.fetch_add(1, Ordering::SeqCst); None } } }) .expect("failed to set the data"); } VcpuExit::Hlt => { break; } // Continue on external interrupt or signal VcpuExit::Intr => continue, r => panic!("unexpected exit reason: {:?}", r), } } assert_eq!(exits.load(Ordering::SeqCst), 2); assert_eq!(memory_reads.load(Ordering::SeqCst), 2); assert_eq!(memory_writes.load(Ordering::SeqCst), 1); let regs = vcpu.get_regs().expect("get_regs() failed"); assert_eq!(regs.rax, 0x66); }