crosvm/sys_util/src/shm.rs
Zach Reizner d42e493143 sys_util: add memfd seal support to SharedMemory
Getting and settings seals is useful to ensure the size of files
underlying memory mappings doesn't shrink, which can trigger a SIGBUS on
access to the truncated pages.

This also bumps the libc version to get MFD_ALLOW_SEALING.

TEST=cargo test
BUG=None
CQ-DEPEND=CL:850535

Change-Id: Ifbe1ec2c47d3d5c51b63472f545acc10d3c8eed2
Reviewed-on: https://chromium-review.googlesource.com/849488
Commit-Ready: Zach Reizner <zachr@chromium.org>
Tested-by: Zach Reizner <zachr@chromium.org>
Reviewed-by: Dylan Reid <dgreid@chromium.org>
2018-01-05 14:28:44 -08:00

332 lines
10 KiB
Rust

// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::ffi::CStr;
use std::fs::File;
use std::io::{Seek, SeekFrom};
use std::os::unix::io::{AsRawFd, IntoRawFd, FromRawFd, RawFd};
use libc::{self, off64_t, c_long, c_int, c_uint, c_char, close, syscall, ftruncate64, fcntl,
F_ADD_SEALS, F_GET_SEALS, F_SEAL_GROW, F_SEAL_SHRINK, F_SEAL_WRITE, F_SEAL_SEAL,
MFD_ALLOW_SEALING};
use errno;
use syscall_defines::linux::LinuxSyscall::SYS_memfd_create;
use {Result, errno_result};
/// A shared memory file descriptor and its size.
pub struct SharedMemory {
fd: File,
size: u64,
}
// from <sys/memfd.h>
const MFD_CLOEXEC: c_uint = 0x0001;
unsafe fn memfd_create(name: *const c_char, flags: c_uint) -> c_int {
syscall(SYS_memfd_create as c_long, name as i64, flags as i64) as c_int
}
/// A set of memfd seals.
///
/// An enumeration of each bit can be found at `fcntl(2)`.
#[derive(Copy, Clone)]
pub struct MemfdSeals(i32);
impl MemfdSeals {
/// Returns an empty set of memfd seals.
#[inline]
pub fn new() -> MemfdSeals {
MemfdSeals(0)
}
/// Gets the raw bitmask of seals enumerated in `fcntl(2)`.
#[inline]
pub fn bitmask(self) -> i32 {
self.0
}
/// True of the grow seal bit is present.
#[inline]
pub fn grow_seal(self) -> bool {
self.0 & F_SEAL_GROW != 0
}
/// Sets the grow seal bit.
#[inline]
pub fn set_grow_seal(&mut self) {
self.0 |= F_SEAL_GROW;
}
/// True of the shrink seal bit is present.
#[inline]
pub fn shrink_seal(self) -> bool {
self.0 & F_SEAL_SHRINK != 0
}
/// Sets the shrink seal bit.
#[inline]
pub fn set_shrink_seal(&mut self) {
self.0 |= F_SEAL_SHRINK;
}
/// True of the write seal bit is present.
#[inline]
pub fn write_seal(self) -> bool {
self.0 & F_SEAL_WRITE != 0
}
/// Sets the write seal bit.
#[inline]
pub fn set_write_seal(&mut self) {
self.0 |= F_SEAL_WRITE;
}
/// True of the seal seal bit is present.
#[inline]
pub fn seal_seal(self) -> bool {
self.0 & F_SEAL_SEAL != 0
}
/// Sets the seal seal bit.
#[inline]
pub fn set_seal_seal(&mut self) {
self.0 |= F_SEAL_SEAL;
}
}
impl SharedMemory {
/// Creates a new shared memory file descriptor with zero size.
///
/// If a name is given, it will appear in `/proc/self/fd/<shm fd>` for the purposes of
/// debugging. The name does not need to be unique.
///
/// The file descriptor is opened with the close on exec flag and allows memfd sealing.
pub fn new(name: Option<&CStr>) -> Result<SharedMemory> {
let shm_name = name.map(|n| n.as_ptr())
.unwrap_or(b"/crosvm_shm\0".as_ptr() as *const c_char);
// The following are safe because we give a valid C string and check the
// results of the memfd_create call.
let fd = unsafe { memfd_create(shm_name, MFD_CLOEXEC | MFD_ALLOW_SEALING) };
if fd < 0 {
return errno_result();
}
let file = unsafe { File::from_raw_fd(fd) };
Ok(SharedMemory { fd: file, size: 0 })
}
/// Constructs a `SharedMemory` instance from a file descriptor that represents shared memory.
///
/// The size of the resulting shared memory will be determined using `File::seek`. If the given
/// file's size can not be determined this way, this will return an error.
pub fn from_raw_fd<T: IntoRawFd>(fd: T) -> Result<SharedMemory> {
// Safe because the IntoRawFd trait indicates fd has unique ownership.
let mut file = unsafe { File::from_raw_fd(fd.into_raw_fd()) };
let file_size = file.seek(SeekFrom::End(0))?;
Ok(SharedMemory {
fd: file,
size: file_size as u64,
})
}
/// Gets the memfd seals that have already been added to this.
///
/// This may fail if this instance was not constructed from a memfd.
pub fn get_seals(&self) -> Result<MemfdSeals> {
let ret = unsafe { fcntl(self.fd.as_raw_fd(), F_GET_SEALS) };
if ret < 0 {
return errno_result();
}
Ok(MemfdSeals(ret))
}
/// Adds the given set of memfd seals.
///
/// This may fail if this instance was not constructed from a memfd with sealing allowed or if
/// the seal seal (`F_SEAL_SEAL`) bit was already added.
pub fn add_seals(&mut self, seals: MemfdSeals) -> Result<()> {
let ret = unsafe { fcntl(self.fd.as_raw_fd(), F_ADD_SEALS, seals) };
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Gets the size in bytes of the shared memory.
///
/// The size returned here does not reflect changes by other interfaces or users of the shared
/// memory file descriptor..
pub fn size(&self) -> u64 {
self.size
}
/// Sets the size in bytes of the shared memory.
///
/// Note that if some process has already mapped this shared memory and the new size is smaller,
/// that process may get signaled with SIGBUS if they access any page past the new size.
pub fn set_size(&mut self, size: u64) -> Result<()> {
let ret = unsafe { ftruncate64(self.fd.as_raw_fd(), size as off64_t) };
if ret < 0 {
return errno_result();
}
self.size = size;
Ok(())
}
}
impl AsRawFd for SharedMemory {
fn as_raw_fd(&self) -> RawFd {
self.fd.as_raw_fd()
}
}
/// Checks if the kernel we are running on has memfd_create. It was introduced in 3.17.
/// Only to be used from tests to prevent running on ancient kernels that won't
/// support the functionality anyways.
pub fn kernel_has_memfd() -> bool {
unsafe {
let fd = memfd_create(b"/test_memfd_create\0".as_ptr() as *const c_char, 0);
if fd < 0 {
if errno::Error::last().errno() == libc::ENOSYS {
return false;
}
return true;
}
close(fd);
}
true
}
#[cfg(test)]
mod tests {
use super::*;
use std::ffi::CString;
use std::fs::read_link;
use std::io::repeat;
use data_model::VolatileMemory;
use MemoryMapping;
#[test]
fn new() {
if !kernel_has_memfd() { return; }
let shm = SharedMemory::new(None).expect("failed to create shared memory");
assert_eq!(shm.size(), 0);
}
#[test]
fn new_sized() {
if !kernel_has_memfd() { return; }
let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
shm.set_size(1024)
.expect("failed to set shared memory size");
assert_eq!(shm.size(), 1024);
}
#[test]
fn new_huge() {
if !kernel_has_memfd() { return; }
let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
shm.set_size(0x7fff_ffff_ffff_ffff)
.expect("failed to set shared memory size");
assert_eq!(shm.size(), 0x7fff_ffff_ffff_ffff);
}
#[test]
fn new_too_huge() {
if !kernel_has_memfd() { return; }
let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
shm.set_size(0x8000_0000_0000_0000).unwrap_err();
assert_eq!(shm.size(), 0);
}
#[test]
fn new_named() {
if !kernel_has_memfd() { return; }
let name = "very unique name";
let cname = CString::new(name).unwrap();
let shm = SharedMemory::new(Some(&cname)).expect("failed to create shared memory");
let fd_path = format!("/proc/self/fd/{}", shm.as_raw_fd());
let link_name =
read_link(fd_path).expect("failed to read link of shared memory /proc/self/fd entry");
assert!(link_name.to_str().unwrap().contains(name));
}
#[test]
fn new_sealed() {
if !kernel_has_memfd() {
return;
}
let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
let mut seals = shm.get_seals().expect("failed to get seals");
assert_eq!(seals.bitmask(), 0);
seals.set_seal_seal();
shm.add_seals(seals).expect("failed to add seals");
seals = shm.get_seals().expect("failed to get seals");
assert!(seals.seal_seal());
// Adding more seals should be rejected by the kernel.
shm.add_seals(seals).unwrap_err();
}
#[test]
fn mmap_page() {
if !kernel_has_memfd() { return; }
let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
shm.set_size(4096)
.expect("failed to set shared memory size");
let mmap1 =
MemoryMapping::from_fd(&shm, shm.size() as usize).expect("failed to map shared memory");
let mmap2 =
MemoryMapping::from_fd(&shm, shm.size() as usize).expect("failed to map shared memory");
assert_ne!(mmap1.get_slice(0, 1).unwrap().as_ptr(),
mmap2.get_slice(0, 1).unwrap().as_ptr());
mmap1
.get_slice(0, 4096)
.expect("failed to get mmap slice")
.read_from(&mut repeat(0x45))
.expect("failed to fill mmap slice");
for i in 0..4096 {
assert_eq!(mmap2.get_ref::<u8>(i).unwrap().load(), 0x45u8);
}
}
#[test]
fn mmap_page_offset() {
if !kernel_has_memfd() {
return;
}
let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
shm.set_size(8092)
.expect("failed to set shared memory size");
let mmap1 =
MemoryMapping::from_fd_offset(&shm, shm.size() as usize, 4096)
.expect("failed to map shared memory");
let mmap2 =
MemoryMapping::from_fd(&shm, shm.size() as usize).expect("failed to map shared memory");
mmap1
.get_slice(0, 4096)
.expect("failed to get mmap slice")
.read_from(&mut repeat(0x45))
.expect("failed to fill mmap slice");
for i in 0..4096 {
assert_eq!(mmap2.get_ref::<u8>(i).unwrap().load(), 0);
}
for i in 4096..8092 {
assert_eq!(mmap2.get_ref::<u8>(i).unwrap().load(), 0x45u8);
}
}
}