crosvm/sys_util/src/mmap.rs
Dylan Reid d4eaa4056f sys_util: Add guest_memory
Add a module for accessing guest memory.
This module will replace all the slices that are used to access it
currently as those slices aren't valid because the memory is volatile
and a volatile slice doesn't exist in rust.

Modify the existing users so they no longer depend on the deprecated slice
access.

Change-Id: Ic0e86dacf66f68bd88ed9cc197cb14e45ada891d
Signed-off-by: Dylan Reid <dgreid@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/509919
2017-05-25 22:51:14 -07:00

310 lines
11 KiB
Rust

// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! The mmap module provides a safe interface to mmap memory and ensures unmap is called when the
//! mmap object leaves scope.
use std;
use std::io::{Read, Write};
use std::ptr::null_mut;
use std::os::unix::io::AsRawFd;
use libc;
use errno;
#[derive(Debug)]
pub enum Error {
/// Requested memory out of range.
InvalidAddress,
/// Couldn't read from the given source.
ReadFromSource,
/// `mmap` returned the given error.
SystemCallFailed(errno::Error),
/// Wrting to memory failed
WriteToMemory(std::io::Error),
}
pub type Result<T> = std::result::Result<T, Error>;
/// Wraps an anonymous shared memory mapping in the current process.
pub struct MemoryMapping {
addr: *mut u8,
size: usize,
}
// Send and Sync aren't automatically inherited for the raw address pointer.
// Accessing that pointer is only done through the stateless interface which
// allows the object to be shared by multiple threads without a decrease in
// safety.
unsafe impl Send for MemoryMapping {}
unsafe impl Sync for MemoryMapping {}
impl MemoryMapping {
/// Creates an anonymous shared mapping of `size` bytes.
///
/// # Arguments
/// * `size` - Size of memory region in bytes.
pub fn new(size: usize) -> Result<MemoryMapping> {
// This is safe because we are creating an anonymous mapping in a place not already used by
// any other area in this process.
let addr = unsafe {
libc::mmap(null_mut(),
size,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_ANONYMOUS | libc::MAP_SHARED | libc::MAP_NORESERVE,
-1,
0)
};
if addr.is_null() {
return Err(Error::SystemCallFailed(errno::Error::last()));
}
Ok(MemoryMapping {
addr: addr as *mut u8,
size: size,
})
}
/// Maps the first `size` bytes of the given `fd`.
///
/// # Arguments
/// * `fd` - File descriptor to mmap from.
/// * `size` - Size of memory region in bytes.
pub fn from_fd(fd: &AsRawFd, size: usize) -> Result<MemoryMapping> {
// This is safe because we are creating a mapping in a place not already used by any other
// area in this process.
let addr = unsafe {
libc::mmap(null_mut(),
size,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_SHARED,
fd.as_raw_fd(),
0)
};
if addr.is_null() {
return Err(Error::SystemCallFailed(errno::Error::last()));
}
Ok(MemoryMapping {
addr: addr as *mut u8,
size: size,
})
}
/// Returns a pointer to the begining of the memory region. Should only be
/// used for passing this region to ioctls for setting guest memory.
pub fn as_ptr(&self) -> *mut u8 {
self.addr
}
/// Returns the size of the memory region in bytes.
pub fn size(&self) -> usize {
self.size
}
/// Writes a slice to the memory region at the specified offset.
/// Returns Ok(<number of bytes written>). The number of bytes written can
/// be less than the length of the slice if there isn't enough room in the
/// memory region.
///
/// # Examples
/// * Write a slice at offset 256.
///
/// ```
/// # use sys_util::MemoryMapping;
/// # let mut mem_map = MemoryMapping::new(1024).unwrap();
/// let res = mem_map.write_slice(&[1,2,3,4,5], 0);
/// assert!(res.is_ok());
/// assert_eq!(res.unwrap(), 5);
/// ```
pub fn write_slice(&self, buf: &[u8], offset: usize) -> Result<usize> {
if offset >= self.size {
return Err(Error::InvalidAddress);
}
unsafe {
// Guest memory can't strictly be modeled as a slice because it is
// volatile. Writing to it with what compiles down to a memcpy
// won't hurt anything as long as we get the bounds checks right.
let mut slice: &mut [u8] = &mut self.as_mut_slice()[offset..];
Ok(slice.write(buf).map_err(Error::WriteToMemory)?)
}
}
/// Writes an object to the memory region at the specified offset.
/// Returns Ok(()) if the object fits, or Err if it extends past the end.
///
/// # Examples
/// * Write a u64 at offset 16.
///
/// ```
/// # use sys_util::MemoryMapping;
/// # let mut mem_map = MemoryMapping::new(1024).unwrap();
/// let res = mem_map.write_obj(55u64, 16);
/// assert!(res.is_ok());
/// ```
pub fn write_obj<T>(&self, val: T, offset: usize) -> Result<()> {
unsafe {
// Guest memory can't strictly be modeled as a slice because it is
// volatile. Writing to it with what compiles down to a memcpy
// won't hurt anything as long as we get the bounds checks right.
if offset + std::mem::size_of::<T>() > self.size {
return Err(Error::InvalidAddress);
}
std::ptr::write_volatile(&mut self.as_mut_slice()[offset..] as *mut _ as *mut T, val);
Ok(())
}
}
/// Reads on object from the memory region at the given offset.
/// Reading from a volatile area isn't strictly safe as it could change
/// mid-read. However, as long as the type T is plain old data and can
/// handle random initialization, everything will be OK.
///
/// # Examples
/// * Read a u64 written to offset 32.
///
/// ```
/// # use sys_util::MemoryMapping;
/// # let mut mem_map = MemoryMapping::new(1024).unwrap();
/// let res = mem_map.write_obj(55u64, 32);
/// assert!(res.is_ok());
/// let num: u64 = mem_map.read_obj(32).unwrap();
/// assert_eq!(55, num);
/// ```
pub fn read_obj<T: Copy>(&self, offset: usize) -> Result<T> {
if offset + std::mem::size_of::<T>() > self.size {
return Err(Error::InvalidAddress);
}
unsafe {
// This is safe because by definition Copy types can have their bits
// set arbitrarily and still be valid.
Ok(std::ptr::read_volatile(&self.as_slice()[offset..] as *const _ as *const T))
}
}
/// Reads data from a readable object like a File and writes it to guest memory.
///
/// # Arguments
/// * `mem_offset` - Begin writing memory at this offset.
/// * `src` - Read from `src` to memory.
/// * `count` - Read `count` bytes from `src` to memory.
///
/// # Examples
///
/// * Read bytes from /dev/urandom
///
/// ```
/// # use sys_util::MemoryMapping;
/// # use std::fs::File;
/// # use std::path::Path;
/// # fn test_read_random() -> Result<u32, ()> {
/// # let mut mem_map = MemoryMapping::new(1024).unwrap();
/// let mut file = File::open(Path::new("/dev/urandom")).map_err(|_| ())?;
/// mem_map.read_to_memory(32, &mut file, 128).map_err(|_| ())?;
/// let rand_val: u32 = mem_map.read_obj(40).map_err(|_| ())?;
/// # Ok(rand_val)
/// # }
/// ```
pub fn read_to_memory<F>(&self, mem_offset: usize, src: &mut F, count: usize) -> Result<()>
where F: Read
{
let mem_end = mem_offset + count;
if mem_end > self.size() {
return Err(Error::InvalidAddress);
}
unsafe {
// It is safe to overwrite the volatile memory. Acessing the guest
// memory as a mutable slice is OK because nothing assumes another
// thread won't change what is loaded.
let mut dst = &mut self.as_mut_slice()[mem_offset..mem_end];
if src.read_exact(dst).is_err() {
return Err(Error::ReadFromSource);
}
}
Ok(())
}
/// Writes data from memory to a writable object.
///
/// # Arguments
/// * `mem_offset` - Begin reading memory from this offset.
/// * `dst` - Write from memory to `dst`.
/// * `count` - Read `count` bytes from memory to `src`.
///
/// # Examples
///
/// * Write 128 bytes to /dev/null
///
/// ```
/// # use sys_util::MemoryMapping;
/// # use std::fs::File;
/// # use std::path::Path;
/// # fn test_write_null() -> Result<(), ()> {
/// # let mut mem_map = MemoryMapping::new(1024).unwrap();
/// let mut file = File::open(Path::new("/dev/null")).map_err(|_| ())?;
/// mem_map.write_from_memory(32, &mut file, 128).map_err(|_| ())?;
/// # Ok(())
/// # }
/// ```
pub fn write_from_memory<F>(&self, mem_offset: usize, dst: &mut F, count: usize) -> Result<()>
where F: Write
{
let mem_end = match mem_offset.checked_add(count) {
None => return Err(Error::InvalidAddress),
Some(m) => m,
};
if mem_end > self.size() {
return Err(Error::InvalidAddress);
}
unsafe {
// It is safe to read from volatile memory. Acessing the guest
// memory as a slice is OK because nothing assumes another thread
// won't change what is loaded.
let src = &self.as_mut_slice()[mem_offset..mem_end];
if dst.write_all(src).is_err() {
return Err(Error::ReadFromSource);
}
}
Ok(())
}
unsafe fn as_slice(&self) -> &[u8] {
// This is safe because we mapped the area at addr ourselves, so this slice will not
// overflow. However, it is possible to alias.
std::slice::from_raw_parts(self.addr, self.size)
}
unsafe fn as_mut_slice(&self) -> &mut [u8] {
// This is safe because we mapped the area at addr ourselves, so this slice will not
// overflow. However, it is possible to alias.
std::slice::from_raw_parts_mut(self.addr, self.size)
}
}
impl Drop for MemoryMapping {
fn drop(&mut self) {
// This is safe because we mmap the area at addr ourselves, and nobody
// else is holding a reference to it.
unsafe {
libc::munmap(self.addr as *mut libc::c_void, self.size);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn basic_map() {
let m = MemoryMapping::new(1024).unwrap();
assert_eq!(1024, m.size());
}
#[test]
fn test_write_past_end() {
let m = MemoryMapping::new(5).unwrap();
let res = m.write_slice(&[1, 2, 3, 4, 5, 6], 0);
assert!(res.is_ok());
assert_eq!(res.unwrap(), 5);
}
}