crosvm/devices/src/pl030.rs
Colin Downs-Razouk 62e2e2e8de devices: add un-mutex-ed BusDevice in Bus
Allow devices to be added to a Bus without a mutex. If a device
implements BusDeviceSync and is inserted into the Bus via the new
insert_sync function, the Bus will not lock the device before write and
read operations. This feature will allow IrqChip implementations to use
the mmio bus for APIC mmio, and allow each vcpu to write to their
respective APICs simultaneously.

This also changes the BusDevice trait so read and write functions take a
new BusAccessInfo struct. The BusAccessInfo conveys the full address of
the read/write operation, the offset of the address relative to the
device start address, and an id that in practice will hold the vcpu id
for the vcpu thread perforing the read/write.

As a result, inserts into the Bus are no longer distinguished between
full_addr and non full_addr inserts. Instead, each device's BusDevice
implementation must decide whether they use the absolute read/write
address or the relative read/write offset.

BUG=chromium:1077058
TEST=ran build_test
TEST=ran simple debian image

Change-Id: I9125aaa69869c1004b6c6a099b50f5c58038d4ab
Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/crosvm/+/2514662
Reviewed-by: Zach Reizner <zachr@chromium.org>
Tested-by: kokoro <noreply+kokoro@google.com>
Commit-Queue: Colin Downs-Razouk <colindr@google.com>
2020-11-23 22:47:29 +00:00

189 lines
5.7 KiB
Rust

// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use base::{warn, Event};
use std::convert::TryFrom;
use std::time::{SystemTime, UNIX_EPOCH};
use crate::{BusAccessInfo, BusDevice};
// Register offsets
// Data register
const RTCDR: u64 = 0x0;
// Match register
const RTCMR: u64 = 0x4;
// Interrupt status register
const RTCSTAT: u64 = 0x8;
// Interrupt clear register
const RTCEOI: u64 = 0x8;
// Counter load register
const RTCLR: u64 = 0xC;
// Counter register
const RTCCR: u64 = 0x10;
// A single 4K page is mapped for this device
pub const PL030_AMBA_IOMEM_SIZE: u64 = 0x1000;
// AMBA id registers are at the end of the allocated memory space
const AMBA_ID_OFFSET: u64 = PL030_AMBA_IOMEM_SIZE - 0x20;
const AMBA_MASK_OFFSET: u64 = PL030_AMBA_IOMEM_SIZE - 0x28;
// This is the AMBA id for this device
pub const PL030_AMBA_ID: u32 = 0x00041030;
pub const PL030_AMBA_MASK: u32 = 0x000FFFFF;
/// An emulated ARM pl030 RTC
pub struct Pl030 {
// Event to be used to interrupt the guest for an alarm event
alarm_evt: Event,
// This is the delta we subtract from current time to get the
// counter value
counter_delta_time: u32,
// This is the value that triggers an alarm interrupt when it
// matches with the rtc time
match_value: u32,
// status flag to keep track of whether the interrupt is cleared
// or not
interrupt_active: bool,
}
fn get_epoch_time() -> u32 {
let epoch_time = SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("SystemTime::duration_since failed");
epoch_time.as_secs() as u32
}
impl Pl030 {
/// Constructs a Pl030 device
pub fn new(evt: Event) -> Pl030 {
Pl030 {
alarm_evt: evt,
counter_delta_time: get_epoch_time(),
match_value: 0,
interrupt_active: false,
}
}
}
impl BusDevice for Pl030 {
fn debug_label(&self) -> String {
"Pl030".to_owned()
}
fn write(&mut self, info: BusAccessInfo, data: &[u8]) {
let data_array = match <&[u8; 4]>::try_from(data) {
Ok(array) => array,
_ => {
warn!("bad write size: {} for pl030", data.len());
return;
}
};
let reg_val = u32::from_ne_bytes(*data_array);
match info.offset {
RTCDR => {
warn!("invalid write to read-only RTCDR register");
}
RTCMR => {
self.match_value = reg_val;
// TODO(sonnyrao): here we need to set up a timer for
// when host time equals the value written here and
// fire the interrupt
warn!("Not implemented: VM tried to set an RTC alarm");
}
RTCEOI => {
if reg_val == 0 {
self.interrupt_active = false;
} else {
self.alarm_evt.write(1).unwrap();
self.interrupt_active = true;
}
}
RTCLR => {
// TODO(sonnyrao): if we ever need to let the VM set it's own time
// then we'll need to keep track of the delta between
// the rtc time it sets and the host's rtc time and
// record that here
warn!("Not implemented: VM tried to set the RTC");
}
RTCCR => {
self.counter_delta_time = get_epoch_time();
}
o => panic!("pl030: bad write {}", o),
}
}
fn read(&mut self, info: BusAccessInfo, data: &mut [u8]) {
let data_array = match <&mut [u8; 4]>::try_from(data) {
Ok(array) => array,
_ => {
warn!("bad write size for pl030");
return;
}
};
let reg_content: u32 = match info.offset {
RTCDR => get_epoch_time(),
RTCMR => self.match_value,
RTCSTAT => self.interrupt_active as u32,
RTCLR => {
warn!("invalid read of RTCLR register");
0
}
RTCCR => get_epoch_time() - self.counter_delta_time,
AMBA_ID_OFFSET => PL030_AMBA_ID,
AMBA_MASK_OFFSET => PL030_AMBA_MASK,
o => panic!("pl030: bad read {}", o),
};
*data_array = reg_content.to_ne_bytes();
}
}
#[cfg(test)]
mod tests {
use super::*;
// The RTC device is placed at page 2 in the mmio bus
const AARCH64_RTC_ADDR: u64 = 0x2000;
fn pl030_bus_address(offset: u64) -> BusAccessInfo {
BusAccessInfo {
address: AARCH64_RTC_ADDR + offset,
offset,
id: 0,
}
}
#[test]
fn test_interrupt_status_register() {
let event = Event::new().unwrap();
let mut device = Pl030::new(event.try_clone().unwrap());
let mut register = [0, 0, 0, 0];
// set interrupt
device.write(pl030_bus_address(RTCEOI), &[1, 0, 0, 0]);
device.read(pl030_bus_address(RTCSTAT), &mut register);
assert_eq!(register, [1, 0, 0, 0]);
assert_eq!(event.read().unwrap(), 1);
// clear interrupt
device.write(pl030_bus_address(RTCEOI), &[0, 0, 0, 0]);
device.read(pl030_bus_address(RTCSTAT), &mut register);
assert_eq!(register, [0, 0, 0, 0]);
}
#[test]
fn test_match_register() {
let mut device = Pl030::new(Event::new().unwrap());
let mut register = [0, 0, 0, 0];
device.write(pl030_bus_address(RTCMR), &[1, 2, 3, 4]);
device.read(pl030_bus_address(RTCMR), &mut register);
assert_eq!(register, [1, 2, 3, 4]);
}
}