No description
Find a file
Sonny Rao 8f73ccc45d x86_64: implement error trait
This is useful for describing errors that we pass up.

BUG=chromium:797868
TEST=build_tests passes on all architectures
TEST=crosvm runs on caroline

Change-Id: Ied456015e74830d3f1f465fca1151682c9148eb5
Reviewed-on: https://chromium-review.googlesource.com/961603
Commit-Ready: Sonny Rao <sonnyrao@chromium.org>
Tested-by: Sonny Rao <sonnyrao@chromium.org>
Reviewed-by: Zach Reizner <zachr@chromium.org>
2018-03-14 11:55:56 -07:00
crosvm_plugin crosvm_plugin: be more Rusty 2018-03-08 19:28:40 -08:00
data_model volatile_memory: Fix usize/u64 confusion in doc test 2018-02-05 23:05:37 -08:00
device_manager crosvm: move device_manager to it's own crate 2018-02-26 22:07:15 -08:00
devices fix some clippy errors that are default deny 2018-03-07 19:47:11 -08:00
fuzz Add kernel_loader fuzzing 2018-01-12 22:37:48 -08:00
io_jail io_jail: add exec support via Minijail::run 2018-01-31 22:39:03 -08:00
kernel_cmdline crosvm: move kernel_cmdline to it's own crate 2018-02-02 23:53:42 -08:00
kernel_loader kernel_loader: implement error trait 2018-02-27 22:26:08 -08:00
kvm kvm: silence a warning on non-x86 builds 2018-03-12 12:52:39 -07:00
kvm_sys add plugin support for configuring CPUID 2018-02-12 22:42:38 -08:00
net_sys net_util: add tap support for mac address 2018-02-21 01:06:42 -08:00
net_util net_util: use sys_util::Error instead of std::io::Error 2018-02-21 14:20:01 -08:00
plugin_proto plugin: add crosvm_net_get_config 2018-03-08 00:37:50 -08:00
qcow qcow: Fix clippy warnings 2018-03-08 00:37:54 -08:00
qcow_utils fix some clippy errors that are default deny 2018-03-07 19:47:11 -08:00
seccomp/x86_64 sys_util: add ppoll to seccomp policies 2018-01-27 01:36:52 -08:00
src crosvm/plugin: refactor poll loop to use PollContext 2018-03-08 19:28:52 -08:00
sys_util crosvm/plugin: refactor poll loop to use PollContext 2018-03-08 19:28:52 -08:00
syscall_defines fix armv7a and aarch64 build errors and warnings 2017-09-01 12:39:18 -07:00
tests plugin: add crosvm_net_get_config 2018-03-08 00:37:50 -08:00
vhost hw/virtio/vhost: Add simple tests backed by fakes 2018-02-02 16:32:12 -08:00
virtio_sys Implement virtio-vsock 2017-09-18 16:48:43 -07:00
vm_control vm_control: more error signedness fixes 2018-03-01 16:13:07 -08:00
x86_64 x86_64: implement error trait 2018-03-14 11:55:56 -07:00
.gitignore gitignore: Remove Cargo.lock 2017-06-17 01:12:44 -07:00
build_test add build_test script to automate crosvm test running 2017-09-01 12:39:19 -07:00
build_test.py crosvm: move device_manager to it's own crate 2018-02-26 22:07:15 -08:00
Cargo.lock plugin: add crosvm_net_get_config 2018-03-08 00:37:50 -08:00
Cargo.toml crosvm: move device_manager to it's own crate 2018-02-26 22:07:15 -08:00
LICENSE
README.md README: use /run paths 2017-10-23 18:22:24 -07:00

crosvm - The Chrome OS Virtual Machine Monitor

This component, known as crosvm, runs untrusted operating systems along with virtualized devices. No actual hardware is emulated. This only runs VMs through the Linux's KVM interface. What makes crosvm unique is a focus on safety within the programming language and a sandbox around the virtual devices to protect the kernel from attack in case of an exploit in the devices.

Usage

To see the usage information for your version of crosvm, run crosvm or crosvm run --help.

Boot a Kernel

To run a very basic VM with just a kernel and default devices:

$ crosvm run "${KERNEL_PATH}"

The uncompressed kernel image, also known as vmlinux, can be found in your kernel build directory in the case of x86 at arch/x86/boot/compressed/vmlinux.

Rootfs

In most cases, you will want to give the VM a virtual block device to use as a root file system:

$ crosvm run -r "${ROOT_IMAGE}" "${KERNEL_PATH}"

The root image must be a path to a disk image formatted in a way that the kernel can read. Typically this is a squashfs image made with mksquashfs or an ext4 image made with mkfs.ext4. By using the -r argument, the kernel is automatically told to use that image as the root, and therefore can only be given once. More disks can be given with -d or --rwdisk if a writable disk is desired.

To run crosvm with a writable rootfs:

WARNING: Writable disks are at risk of corruption by a malicious or malfunctioning guest OS.

crosvm run --rwdisk "${ROOT_IMAGE}" -p "root=/dev/vda" vmlinux

NOTE: If more disks arguments are added prior to the desired rootfs image, the root=/dev/vda must be adjusted to the appropriate letter.

Control Socket

If the control socket was enabled with -s, the main process can be controlled while crosvm is running. To tell crosvm to stop and exit, for example:

NOTE: If the socket path given is for a directory, a socket name underneath that path will be generated based on crosvm's PID.

$ crosvm run -s /run/crosvm.sock ${USUAL_CROSVM_ARGS}
    <in another shell>
$ crosvm stop /run/crosvm.sock

WARNING: The guest OS will not be notified or gracefully shutdown.

This will cause the original crosvm process to exit in an orderly fashion, allowing it to clean up any OS resources that might have stuck around if crosvm were terminated early.

Multiprocess Mode

By default crosvm runs in multiprocess mode. Each device that supports running inside of a sandbox will run in a jailed child process of crosvm. The appropriate minijail seccomp policy files must be present either in /usr/share/policy/crosvm or in the path specified by the --seccomp-policy-dir argument. The sandbox can be disabled for testing with the '--disable-sandbox` option.

Virtio Wayland

Virtio Wayland support requires special support on the part of the guest and as such is unlikely to work out of the box unless you are using a Chrome OS kernel along with a termina rootfs.

To use it, ensure that the XDG_RUNTIME_DIR enviroment variable is set and that the path $XDG_RUNTIME_DIR/wayland-0 points to the socket of the Wayland compositor you would like the guest to use.

Defaults

The following are crosvm's default arguments and how to override them.

  • 256MB of memory (set with -m)
  • 1 virtual CPU (set with -c)
  • no block devices (set with -r, -d, or --rwdisk)
  • no network (set with --host_ip, --netmask, and --mac)
  • virtio wayland support if XDG_RUNTIME_DIR enviroment variable is set (disable with --no-wl)
  • only the kernel arguments necessary to run with the supported devices (add more with -p)
  • run in single process mode (run in multiprocess mode with -u)
  • no control socket (set with -s)

System Requirements

A Linux kernel with KVM support (check for /dev/kvm) is required to run crosvm. In order to run certain devices, there are additional system requirements:

  • virtio-wayland - The memfd_create syscall, introduced in Linux 3.17, and a Wayland compositor.
  • vsock - Host Linux kernel with vhost-vsock support, introduced in Linux 4.8.
  • multiprocess - Host Linux kernel with seccomp-bpf and Linux namespaceing support.
  • virtio-net - Host Linux kernel with TUN/TAP support (check for /dev/net/tun) and running with CAP_NET_ADMIN privileges.

Emulated Devices

Device Description
CMOS/RTC Used to get the current calendar time.
i8042 Used by the guest kernel to exit crosvm.
serial x86 I/O port driven serial devices that print to stdout and take input from stdin.
virtio-block Basic read/write block device.
virtio-net Device to interface the host and guest networks.
virtio-rng Entropy source used to seed guest OS's entropy pool.
virtio-vsock Enabled VSOCKs for the guests.
virtio-wayland Allowed guest to use host Wayland socket.

Contributing

Code Health

build_test

There are no automated tests run before code is committed to crosvm. In order to maintain sanity, please execute build_test before submitting code for review. All tests should be passing or ignored and there should be no compiler warnings or errors. All supported architectures are built, but only tests for x86_64 are run. In order to build everything without failures, sysroots must be supplied for each architecture. See build_test -h for more information.

rustfmt

New code should be run with rustfmt, but not all currently checked in code has already been autoformatted. If running rustfmt causes a lot of churn for a file, do not check in lines unrelated to your change.

Dependencies

With a few exceptions, external dependencies inside of the Cargo.toml files are not allowed. The reason being that community made crates tend to explode the binary size by including dozens of transitive dependencies. All these dependencies also must be reviewed to ensure their suitability to the crosvm project. Currently allowed crates are:

  • byteorder - A very small library used for endian swaps.
  • gcc - Build time dependency needed to build C source code used in crosvm.
  • libc - Required to use the standard library, this crate is a simple wrapper around libc's symbols.

Code Overview

The crosvm source code is written in Rust and C. To build, crosvm requires rustc v1.20 or later.

Source code is organized into crates, each with their own unit tests. These crates are:

  • crosvm - The top-level binary front-end for using crosvm.
  • devices - Virtual devices exposed to the guest OS.
  • io_jail - Creates jailed process using libminijail.
  • kernel_loader - Loads elf64 kernel files to a slice of memory.
  • kvm_sys - Low-level (mostly) auto-generated structures and constants for using KVM.
  • kvm - Unsafe, low-level wrapper code for using kvm_sys.
  • net_sys - Low-level (mostly) auto-generated structures and constants for creating TUN/TAP devices.
  • net_util - Wrapper for creating TUN/TAP devices.
  • sys_util - Mostly safe wrappers for small system facilities such as eventfd or syslog.
  • syscall_defines - Lists of syscall numbers in each architecture used to make syscalls not supported in libc.
  • vhost - Wrappers for creating vhost based devices.
  • virtio_sys - Low-level (mostly) auto-generated structures and constants for interfacing with kernel vhost support.
  • vm_control - IPC for the VM.
  • x86_64 - Support code specific to 64 bit intel machines.

The seccomp folder contains minijail seccomp policy files for each sandboxed device. Because some syscalls vary by architecturs, the seccomp policies are split by architecture.