crosvm/sys_util/src/lib.rs
Zach Reizner 127453d7ec eliminate mut from non-mut references
This manifested itself in a couple places that were turning shared
memory buffers into slices for the purposes of passing these slices to
`Read` and `Write` trait methods.

However, this required the removal of the methods that took `Read` and
`Write` instances. This was a convenient interface but impossible to
implement safely because making slices from raw pointers without
enforcing safety guarantees causes undefined behaviour in Rust. It turns
out lots of code in crosvm was using these interfaces indirectly, which
explains why this CL touches so much.

TEST=crosvm run
BUG=chromium:938767

Change-Id: I4ff40c98da6ed08a4a42f4c31f0717f81b1c5863
Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/crosvm/+/1636685
Reviewed-by: Zach Reizner <zachr@chromium.org>
Tested-by: Zach Reizner <zachr@chromium.org>
Tested-by: kokoro <noreply+kokoro@google.com>
Commit-Queue: Zach Reizner <zachr@chromium.org>
2019-06-04 20:29:25 +00:00

323 lines
9.2 KiB
Rust

// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Small system utility modules for usage by other modules.
pub mod affinity;
mod alloc;
#[macro_use]
pub mod handle_eintr;
#[macro_use]
pub mod ioctl;
#[macro_use]
pub mod syslog;
mod capabilities;
mod clock;
mod errno;
mod eventfd;
mod file_flags;
mod file_traits;
mod fork;
mod guest_address;
pub mod guest_memory;
mod mmap;
pub mod net;
mod passwd;
mod poll;
mod priority;
mod raw_fd;
mod seek_hole;
mod shm;
pub mod signal;
mod signalfd;
mod sock_ctrl_msg;
mod struct_util;
mod tempdir;
mod terminal;
mod timerfd;
mod write_zeroes;
pub use crate::affinity::*;
pub use crate::alloc::LayoutAllocation;
pub use crate::capabilities::drop_capabilities;
pub use crate::clock::{Clock, FakeClock};
use crate::errno::errno_result;
pub use crate::errno::{Error, Result};
pub use crate::eventfd::*;
pub use crate::file_flags::*;
pub use crate::fork::*;
pub use crate::guest_address::*;
pub use crate::guest_memory::*;
pub use crate::ioctl::*;
pub use crate::mmap::*;
pub use crate::passwd::*;
pub use crate::poll::*;
pub use crate::priority::*;
pub use crate::raw_fd::*;
pub use crate::shm::*;
pub use crate::signal::*;
pub use crate::signalfd::*;
pub use crate::sock_ctrl_msg::*;
pub use crate::struct_util::*;
pub use crate::tempdir::*;
pub use crate::terminal::*;
pub use crate::timerfd::*;
pub use poll_token_derive::*;
pub use crate::file_traits::{FileReadWriteVolatile, FileSetLen, FileSync};
pub use crate::guest_memory::Error as GuestMemoryError;
pub use crate::mmap::Error as MmapError;
pub use crate::seek_hole::SeekHole;
pub use crate::signalfd::Error as SignalFdError;
pub use crate::write_zeroes::{PunchHole, WriteZeroes};
use std::ffi::CStr;
use std::fs::{remove_file, File};
use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use std::os::unix::net::UnixDatagram;
use std::ptr;
use libc::{
c_long, gid_t, kill, pid_t, pipe2, syscall, sysconf, uid_t, waitpid, O_CLOEXEC, SIGKILL,
WNOHANG, _SC_PAGESIZE,
};
use syscall_defines::linux::LinuxSyscall::SYS_getpid;
/// Safe wrapper for `sysconf(_SC_PAGESIZE)`.
#[inline(always)]
pub fn pagesize() -> usize {
// Trivially safe
unsafe { sysconf(_SC_PAGESIZE) as usize }
}
/// Uses the system's page size in bytes to round the given value up to the nearest page boundary.
#[inline(always)]
pub fn round_up_to_page_size(v: usize) -> usize {
let page_mask = pagesize() - 1;
(v + page_mask) & !page_mask
}
/// This bypasses `libc`'s caching `getpid(2)` wrapper which can be invalid if a raw clone was used
/// elsewhere.
#[inline(always)]
pub fn getpid() -> pid_t {
// Safe because this syscall can never fail and we give it a valid syscall number.
unsafe { syscall(SYS_getpid as c_long) as pid_t }
}
/// Safe wrapper for `geteuid(2)`.
#[inline(always)]
pub fn geteuid() -> uid_t {
// trivially safe
unsafe { libc::geteuid() }
}
/// Safe wrapper for `getegid(2)`.
#[inline(always)]
pub fn getegid() -> gid_t {
// trivially safe
unsafe { libc::getegid() }
}
/// Safe wrapper for chown(2).
#[inline(always)]
pub fn chown(path: &CStr, uid: uid_t, gid: gid_t) -> Result<()> {
// Safe since we pass in a valid string pointer and check the return value.
let ret = unsafe { libc::chown(path.as_ptr(), uid, gid) };
if ret < 0 {
errno_result()
} else {
Ok(())
}
}
/// The operation to perform with `flock`.
pub enum FlockOperation {
LockShared,
LockExclusive,
Unlock,
}
/// Safe wrapper for flock(2) with the operation `op` and optionally `nonblocking`. The lock will be
/// dropped automatically when `file` is dropped.
#[inline(always)]
pub fn flock(file: &dyn AsRawFd, op: FlockOperation, nonblocking: bool) -> Result<()> {
let mut operation = match op {
FlockOperation::LockShared => libc::LOCK_SH,
FlockOperation::LockExclusive => libc::LOCK_EX,
FlockOperation::Unlock => libc::LOCK_UN,
};
if nonblocking {
operation |= libc::LOCK_NB;
}
// Safe since we pass in a valid fd and flock operation, and check the return value.
let ret = unsafe { libc::flock(file.as_raw_fd(), operation) };
if ret < 0 {
errno_result()
} else {
Ok(())
}
}
/// The operation to perform with `fallocate`.
pub enum FallocateMode {
PunchHole,
ZeroRange,
}
/// Safe wrapper for `fallocate()`.
pub fn fallocate(
file: &dyn AsRawFd,
mode: FallocateMode,
keep_size: bool,
offset: u64,
len: u64,
) -> Result<()> {
let offset = if offset > libc::off64_t::max_value() as u64 {
return Err(Error::new(libc::EINVAL));
} else {
offset as libc::off64_t
};
let len = if len > libc::off64_t::max_value() as u64 {
return Err(Error::new(libc::EINVAL));
} else {
len as libc::off64_t
};
let mut mode = match mode {
FallocateMode::PunchHole => libc::FALLOC_FL_PUNCH_HOLE,
FallocateMode::ZeroRange => libc::FALLOC_FL_ZERO_RANGE,
};
if keep_size {
mode |= libc::FALLOC_FL_KEEP_SIZE;
}
// Safe since we pass in a valid fd and fallocate mode, validate offset and len,
// and check the return value.
let ret = unsafe { libc::fallocate64(file.as_raw_fd(), mode, offset, len) };
if ret < 0 {
errno_result()
} else {
Ok(())
}
}
/// Reaps a child process that has terminated.
///
/// Returns `Ok(pid)` where `pid` is the process that was reaped or `Ok(0)` if none of the children
/// have terminated. An `Error` is with `errno == ECHILD` if there are no children left to reap.
///
/// # Examples
///
/// Reaps all child processes until there are no terminated children to reap.
///
/// ```
/// fn reap_children() {
/// loop {
/// match sys_util::reap_child() {
/// Ok(0) => println!("no children ready to reap"),
/// Ok(pid) => {
/// println!("reaped {}", pid);
/// continue
/// },
/// Err(e) if e.errno() == libc::ECHILD => println!("no children left"),
/// Err(e) => println!("error reaping children: {}", e),
/// }
/// break
/// }
/// }
/// ```
pub fn reap_child() -> Result<pid_t> {
// Safe because we pass in no memory, prevent blocking with WNOHANG, and check for error.
let ret = unsafe { waitpid(-1, ptr::null_mut(), WNOHANG) };
if ret == -1 {
errno_result()
} else {
Ok(ret)
}
}
/// Kill all processes in the current process group.
///
/// On success, this kills all processes in the current process group, including the current
/// process, meaning this will not return. This is equivalent to a call to `kill(0, SIGKILL)`.
pub fn kill_process_group() -> Result<()> {
let ret = unsafe { kill(0, SIGKILL) };
if ret == -1 {
errno_result()
} else {
// Kill succeeded, so this process never reaches here.
unreachable!();
}
}
/// Spawns a pipe pair where the first pipe is the read end and the second pipe is the write end.
///
/// If `close_on_exec` is true, the `O_CLOEXEC` flag will be set during pipe creation.
pub fn pipe(close_on_exec: bool) -> Result<(File, File)> {
let flags = if close_on_exec { O_CLOEXEC } else { 0 };
let mut pipe_fds = [-1; 2];
// Safe because pipe2 will only write 2 element array of i32 to the given pointer, and we check
// for error.
let ret = unsafe { pipe2(&mut pipe_fds[0], flags) };
if ret == -1 {
errno_result()
} else {
// Safe because both fds must be valid for pipe2 to have returned sucessfully and we have
// exclusive ownership of them.
Ok(unsafe {
(
File::from_raw_fd(pipe_fds[0]),
File::from_raw_fd(pipe_fds[1]),
)
})
}
}
/// Used to attempt to clean up a named pipe after it is no longer used.
pub struct UnlinkUnixDatagram(pub UnixDatagram);
impl AsRef<UnixDatagram> for UnlinkUnixDatagram {
fn as_ref(&self) -> &UnixDatagram {
&self.0
}
}
impl Drop for UnlinkUnixDatagram {
fn drop(&mut self) {
if let Ok(addr) = self.0.local_addr() {
if let Some(path) = addr.as_pathname() {
if let Err(e) = remove_file(path) {
warn!("failed to remove control socket file: {}", e);
}
}
}
}
}
/// Verifies that |raw_fd| is actually owned by this process and duplicates it to ensure that
/// we have a unique handle to it.
pub fn validate_raw_fd(raw_fd: RawFd) -> Result<RawFd> {
// Checking that close-on-exec isn't set helps filter out FDs that were opened by
// crosvm as all crosvm FDs are close on exec.
// Safe because this doesn't modify any memory and we check the return value.
let flags = unsafe { libc::fcntl(raw_fd, libc::F_GETFD) };
if flags < 0 || (flags & libc::FD_CLOEXEC) != 0 {
return Err(Error::new(libc::EBADF));
}
// Duplicate the fd to ensure that we don't accidentally close an fd previously
// opened by another subsystem. Safe because this doesn't modify any memory and
// we check the return value.
let dup_fd = unsafe { libc::fcntl(raw_fd, libc::F_DUPFD_CLOEXEC, 0) };
if dup_fd < 0 {
return Err(Error::last());
}
Ok(dup_fd as RawFd)
}