crosvm/tests/plugins.rs
Matt Delco a52b2a6c81 crosvm: add plugin API for async writes
A plugin might care to be immediately notified when a write
is made to a port, but it doesn't care to have the VM stopped
while the plugin calls back to resume the VM.

Unfortunately this means that multiple messages can be queued up in the
pipe and read() together by the plugin API.  Protobuf's parsing function
doesn't report how many bytes it read, so I've resorted to having crosvm
prefix every message with a length and then have the plugin lib parse
this number.  Impact on performance has not been measured.

BUG=b:143294496
TEST=Local build and run of build_test.  Verified that new unit
test was executed, exercised the case where multiple msgs are
received together, and completed successfully.

Change-Id: If6ef463e7b4d2e688e649f832a764fa644bf2d36
Signed-off-by: Matt Delco <delco@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/crosvm/+/1896376
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Stephen Barber <smbarber@chromium.org>
2019-11-06 23:01:15 +00:00

719 lines
24 KiB
Rust

// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#![cfg(feature = "plugin")]
use std::env::{current_exe, var_os};
use std::ffi::OsString;
use std::fs::{remove_file, File};
use std::io::{Read, Write};
use std::os::unix::io::AsRawFd;
use std::path::{Path, PathBuf};
use std::process::{Command, Stdio};
use std::thread::sleep;
use std::time::Duration;
use rand_ish::urandom_str;
use sys_util::{ioctl, SharedMemory};
struct RemovePath(PathBuf);
impl Drop for RemovePath {
fn drop(&mut self) {
if let Err(e) = remove_file(&self.0) {
eprintln!("failed to remove path: {}", e);
}
}
}
fn get_target_path() -> PathBuf {
current_exe()
.ok()
.map(|mut path| {
path.pop();
path
})
.expect("failed to get crosvm binary directory")
}
fn get_crosvm_path() -> PathBuf {
current_exe()
.ok()
.map(|mut path| {
path.pop();
if path.ends_with("deps") {
path.pop();
}
path
})
.expect("failed to get crosvm binary directory")
}
fn build_plugin(src: &str) -> RemovePath {
let libcrosvm_plugin_dir = get_target_path();
let mut out_bin = libcrosvm_plugin_dir.clone();
let randbin = urandom_str(10).expect("failed to generate random bin name");
out_bin.push(randbin);
let mut child = Command::new(var_os("CC").unwrap_or(OsString::from("cc")))
.args(&["-Icrosvm_plugin", "-pthread", "-o"]) // crosvm.h location and set output path.
.arg(&out_bin)
.arg("-L") // Path of shared object to link to.
.arg(&libcrosvm_plugin_dir)
.arg("-lcrosvm_plugin")
.arg("-Wl,-rpath") // Search for shared object in the same path when exec'd.
.arg(&libcrosvm_plugin_dir)
.args(&["-Wl,-rpath", "."]) // Also check current directory in case of sandboxing.
.args(&["-xc", "-"]) // Read source code from piped stdin.
.stdin(Stdio::piped())
.spawn()
.expect("failed to spawn compiler");
let stdin = child.stdin.as_mut().expect("failed to open stdin");
stdin
.write_all(src.as_bytes())
.expect("failed to write source to stdin");
let status = child.wait().expect("failed to wait for compiler");
assert!(status.success(), "failed to build plugin");
RemovePath(PathBuf::from(out_bin))
}
fn run_plugin(bin_path: &Path, with_sandbox: bool) {
let mut crosvm_path = get_crosvm_path();
crosvm_path.push("crosvm");
let mut cmd = Command::new(crosvm_path);
cmd.args(&[
"run",
"-c",
"1",
"--host_ip",
"100.115.92.5",
"--netmask",
"255.255.255.252",
"--mac",
"de:21:e8:47:6b:6a",
"--seccomp-policy-dir",
"tests",
"--plugin",
])
.arg(
bin_path
.canonicalize()
.expect("failed to canonicalize plugin path"),
);
if !with_sandbox {
cmd.arg("--disable-sandbox");
}
let mut child = cmd.spawn().expect("failed to spawn crosvm");
for _ in 0..12 {
match child.try_wait().expect("failed to wait for crosvm") {
Some(status) => {
assert!(status.success());
return;
}
None => sleep(Duration::from_millis(100)),
}
}
child.kill().expect("failed to kill crosvm");
panic!("crosvm process has timed out");
}
fn test_plugin(src: &str) {
let bin_path = build_plugin(src);
// Run with and without the sandbox enabled.
run_plugin(&bin_path.0, false);
run_plugin(&bin_path.0, true);
}
fn keep_fd_on_exec<F: AsRawFd>(f: &F) {
unsafe {
ioctl(f, 0x5450 /* FIONCLEX */);
}
}
/// Takes assembly source code and returns the resulting assembly code.
fn build_assembly(src: &str) -> Vec<u8> {
// Creates a shared memory region with the assembly source code in it.
let in_shm = SharedMemory::anon().unwrap();
let mut in_shm_file: File = in_shm.into();
keep_fd_on_exec(&in_shm_file);
in_shm_file.write_all(src.as_bytes()).unwrap();
// Creates a shared memory region that will hold the nasm output.
let mut out_shm_file: File = SharedMemory::anon().unwrap().into();
keep_fd_on_exec(&out_shm_file);
// Runs nasm with the input and output files set to the FDs of the above shared memory regions,
// which we have preserved accross exec.
let status = Command::new("nasm")
.arg(format!("/proc/self/fd/{}", in_shm_file.as_raw_fd()))
.args(&["-f", "bin", "-o"])
.arg(format!("/proc/self/fd/{}", out_shm_file.as_raw_fd()))
.status()
.expect("failed to spawn assembler");
assert!(status.success());
let mut out_bytes = Vec::new();
out_shm_file.read_to_end(&mut out_bytes).unwrap();
out_bytes
}
// Converts the input bytes to an output string in the format "0x01,0x02,0x03...".
fn format_as_hex(data: &[u8]) -> String {
let mut out = String::new();
for (i, d) in data.iter().enumerate() {
out.push_str(&format!("0x{:02x}", d));
if i < data.len() - 1 {
out.push(',')
}
}
out
}
// A testing framework for creating simple plugins.
struct MiniPlugin {
// The size in bytes of the guest memory based at 0x0000.
mem_size: u64,
// The address in guest memory to load the assembly code.
load_address: u32,
// The nasm syntax 16-bit assembly code that will assembled and loaded into guest memory.
assembly_src: &'static str,
// The C source code that will be included in the mini_plugin_template.c file. This code must
// define the forward declarations above the {src} line so that the completed plugin source will
// compile.
src: &'static str,
}
impl Default for MiniPlugin {
fn default() -> Self {
MiniPlugin {
mem_size: 0x2000,
load_address: 0x1000,
assembly_src: "hlt",
src: "",
}
}
}
// Builds and tests the given MiniPlugin definiton.
fn test_mini_plugin(plugin: &MiniPlugin) {
// Adds a preamble to ensure the output opcodes are 16-bit real mode and the lables start at the
// load address.
let assembly_src = format!(
"org 0x{:x}\nbits 16\n{}",
plugin.load_address, plugin.assembly_src
);
// Builds the assembly and convert it to a C literal array format.
let assembly = build_assembly(&assembly_src);
let assembly_hex = format_as_hex(&assembly);
// Glues the pieces of this plugin together and tests the completed plugin.
let generated_src = format!(
include_str!("mini_plugin_template.c"),
mem_size = plugin.mem_size,
load_address = plugin.load_address,
assembly_code = assembly_hex,
src = plugin.src
);
test_plugin(&generated_src);
}
#[test]
fn test_adder() {
test_plugin(include_str!("plugin_adder.c"));
}
#[test]
fn test_hint() {
test_plugin(include_str!("plugin_hint.c"));
}
#[test]
fn test_async_write() {
test_plugin(include_str!("plugin_async_write.c"));
}
#[test]
fn test_dirty_log() {
test_plugin(include_str!("plugin_dirty_log.c"));
}
#[test]
fn test_ioevent() {
test_plugin(include_str!("plugin_ioevent.c"));
}
#[test]
fn test_irqfd() {
test_plugin(include_str!("plugin_irqfd.c"));
}
#[test]
fn test_extensions() {
test_plugin(include_str!("plugin_extensions.c"));
}
#[test]
fn test_supported_cpuid() {
test_plugin(include_str!("plugin_supported_cpuid.c"));
}
#[test]
fn test_msr_index_list() {
test_plugin(include_str!("plugin_msr_index_list.c"));
}
#[test]
fn test_vm_state_manipulation() {
test_plugin(include_str!("plugin_vm_state.c"));
}
#[test]
fn test_vcpu_pause() {
test_plugin(include_str!("plugin_vcpu_pause.c"));
}
#[test]
fn test_net_config() {
test_plugin(include_str!("plugin_net_config.c"));
}
#[test]
fn test_debugregs() {
let mini_plugin = MiniPlugin {
assembly_src: "org 0x1000
bits 16
mov dr0, ebx
mov eax, dr1
mov byte [0x3000], 1",
src: r#"
#define DR1_VALUE 0x12
#define RBX_VALUE 0xabcdef00
#define KILL_ADDRESS 0x3000
int g_kill_evt;
struct kvm_regs g_regs;
struct kvm_debugregs g_dregs;
int setup_vm(struct crosvm *crosvm, void *mem) {
g_kill_evt = crosvm_get_shutdown_eventfd(crosvm);
crosvm_reserve_range(crosvm, CROSVM_ADDRESS_SPACE_MMIO, KILL_ADDRESS, 1);
return 0;
}
int handle_vpcu_init(struct crosvm_vcpu *vcpu, struct kvm_regs *regs,
struct kvm_sregs *sregs)
{
regs->rbx = RBX_VALUE;
struct kvm_debugregs dregs;
crosvm_vcpu_get_debugregs(vcpu, &dregs);
dregs.db[1] = DR1_VALUE;
crosvm_vcpu_set_debugregs(vcpu, &dregs);
return 0;
}
int handle_vpcu_evt(struct crosvm_vcpu *vcpu, struct crosvm_vcpu_event evt) {
if (evt.kind == CROSVM_VCPU_EVENT_KIND_IO_ACCESS &&
evt.io_access.address_space == CROSVM_ADDRESS_SPACE_MMIO &&
evt.io_access.address == KILL_ADDRESS &&
evt.io_access.is_write &&
evt.io_access.length == 1 &&
evt.io_access.data[0] == 1)
{
uint64_t dummy = 1;
crosvm_vcpu_get_debugregs(vcpu, &g_dregs);
crosvm_vcpu_get_regs(vcpu, &g_regs);
write(g_kill_evt, &dummy, sizeof(dummy));
return 1;
}
return 0;
}
int check_result(struct crosvm *vcpu, void *mem) {
if (g_dregs.db[1] != DR1_VALUE) {
fprintf(stderr, "dr1 register has unexpected value: 0x%x\n", g_dregs.db[1]);
return 1;
}
if (g_dregs.db[0] != RBX_VALUE) {
fprintf(stderr, "dr0 register has unexpected value: 0x%x\n", g_dregs.db[0]);
return 1;
}
if (g_regs.rax != DR1_VALUE) {
fprintf(stderr, "eax register has unexpected value: 0x%x\n", g_regs.rax);
return 1;
}
return 0;
}"#,
..Default::default()
};
test_mini_plugin(&mini_plugin);
}
#[test]
fn test_xcrs() {
let mini_plugin = MiniPlugin {
assembly_src: "org 0x1000
bits 16
mov byte [0x3000], 1",
src: r#"
#define XCR0_VALUE 0x1
#define KILL_ADDRESS 0x3000
int g_kill_evt;
struct kvm_xcrs g_xcrs;
int setup_vm(struct crosvm *crosvm, void *mem) {
g_kill_evt = crosvm_get_shutdown_eventfd(crosvm);
crosvm_reserve_range(crosvm, CROSVM_ADDRESS_SPACE_MMIO, KILL_ADDRESS, 1);
return 0;
}
int handle_vpcu_init(struct crosvm_vcpu *vcpu, struct kvm_regs *regs,
struct kvm_sregs *sregs)
{
struct kvm_xcrs xcrs = {};
xcrs.nr_xcrs = 1;
xcrs.xcrs[0].value = XCR0_VALUE;
crosvm_vcpu_set_xcrs(vcpu, &xcrs);
return 0;
}
int handle_vpcu_evt(struct crosvm_vcpu *vcpu, struct crosvm_vcpu_event evt) {
if (evt.kind == CROSVM_VCPU_EVENT_KIND_IO_ACCESS &&
evt.io_access.address_space == CROSVM_ADDRESS_SPACE_MMIO &&
evt.io_access.address == KILL_ADDRESS &&
evt.io_access.is_write &&
evt.io_access.length == 1 &&
evt.io_access.data[0] == 1)
{
uint64_t dummy = 1;
crosvm_vcpu_get_xcrs(vcpu, &g_xcrs);
write(g_kill_evt, &dummy, sizeof(dummy));
return 1;
}
return 0;
}
int check_result(struct crosvm *vcpu, void *mem) {
if (g_xcrs.xcrs[0].value != XCR0_VALUE) {
fprintf(stderr, "xcr0 register has unexpected value: 0x%x\n",
g_xcrs.xcrs[0].value);
return 1;
}
return 0;
}"#,
..Default::default()
};
test_mini_plugin(&mini_plugin);
}
#[test]
fn test_msrs() {
let mini_plugin = MiniPlugin {
assembly_src: "org 0x1000
bits 16
rdmsr
mov [0x0], eax
mov [0x4], edx
mov ecx, ebx
mov eax, [0x8]
mov edx, [0xc]
wrmsr
mov byte [es:0], 1",
src: r#"
#define MSR1_INDEX 0x00000174
#define MSR1_DATA 1
#define MSR2_INDEX 0x00000175
#define MSR2_DATA 2
#define KILL_ADDRESS 0x3000
int g_kill_evt;
uint32_t g_msr2_count;
struct kvm_msr_entry g_msr2;
int setup_vm(struct crosvm *crosvm, void *mem) {
g_kill_evt = crosvm_get_shutdown_eventfd(crosvm);
crosvm_reserve_range(crosvm, CROSVM_ADDRESS_SPACE_MMIO, KILL_ADDRESS, 1);
((uint64_t*)mem)[1] = MSR2_DATA;
return 0;
}
int handle_vpcu_init(struct crosvm_vcpu *vcpu, struct kvm_regs *regs,
struct kvm_sregs *sregs)
{
regs->rcx = MSR1_INDEX;
regs->rbx = MSR2_INDEX;
sregs->es.base = KILL_ADDRESS;
struct kvm_msr_entry msr1 = {0};
msr1.index = MSR1_INDEX;
msr1.data = MSR1_DATA;
crosvm_vcpu_set_msrs(vcpu, 1, &msr1);
return 0;
}
int handle_vpcu_evt(struct crosvm_vcpu *vcpu, struct crosvm_vcpu_event evt) {
if (evt.kind == CROSVM_VCPU_EVENT_KIND_IO_ACCESS &&
evt.io_access.address_space == CROSVM_ADDRESS_SPACE_MMIO &&
evt.io_access.address == KILL_ADDRESS &&
evt.io_access.is_write &&
evt.io_access.length == 1 &&
evt.io_access.data[0] == 1)
{
uint64_t dummy = 1;
g_msr2.index = MSR2_INDEX;
crosvm_vcpu_get_msrs(vcpu, 1, &g_msr2, &g_msr2_count);
write(g_kill_evt, &dummy, sizeof(dummy));
return 1;
}
return 0;
}
int check_result(struct crosvm *vcpu, void *mem) {
uint64_t msr1_data = ((uint64_t*)mem)[0];
if (msr1_data != MSR1_DATA) {
fprintf(stderr, "msr1 has unexpected value: 0x%x\n", msr1_data);
return 1;
}
if (g_msr2_count != 1) {
fprintf(stderr, "incorrect number of returned MSRSs: %d\n", g_msr2_count);
return 1;
}
if (g_msr2.data != MSR2_DATA) {
fprintf(stderr, "msr2 has unexpected value: 0x%x\n", g_msr2.data);
return 1;
}
return 0;
}"#,
..Default::default()
};
test_mini_plugin(&mini_plugin);
}
#[test]
fn test_cpuid() {
let mini_plugin = MiniPlugin {
assembly_src: "org 0x1000
bits 16
push eax
push ecx
cpuid
mov [0x0], eax
mov [0x4], ebx
mov [0x8], ecx
mov [0xc], edx
pop ecx
pop eax
add ecx, 1
cpuid
mov [0x10], eax
mov [0x14], ebx
mov [0x18], ecx
mov [0x1c], edx
mov byte [es:0], 1",
src: r#"
#define ENTRY1_INDEX 0
#define ENTRY1_EAX 0x40414243
#define ENTRY1_EBX 0x50515253
#define ENTRY1_ECX 0x60616263
#define ENTRY1_EDX 0x71727374
#define ENTRY2_INDEX 1
#define ENTRY2_EAX 0xAABBCCDD
#define ENTRY2_EBX 0xEEFF0011
#define ENTRY2_ECX 0x22334455
#define ENTRY2_EDX 0x66778899
#define KILL_ADDRESS 0x3000
int g_kill_evt;
struct kvm_msr_entry g_msr2;
int setup_vm(struct crosvm *crosvm, void *mem) {
g_kill_evt = crosvm_get_shutdown_eventfd(crosvm);
crosvm_reserve_range(crosvm, CROSVM_ADDRESS_SPACE_MMIO, KILL_ADDRESS, 1);
return 0;
}
int handle_vpcu_init(struct crosvm_vcpu *vcpu, struct kvm_regs *regs,
struct kvm_sregs *sregs)
{
regs->rax = ENTRY1_INDEX;
regs->rcx = 0;
regs->rsp = 0x1000;
sregs->es.base = KILL_ADDRESS;
struct kvm_cpuid_entry2 entries[2];
entries[0].function = 0;
entries[0].index = ENTRY1_INDEX;
entries[0].flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
entries[0].eax = ENTRY1_EAX;
entries[0].ebx = ENTRY1_EBX;
entries[0].ecx = ENTRY1_ECX;
entries[0].edx = ENTRY1_EDX;
entries[1].function = 0;
entries[1].index = ENTRY2_INDEX;
entries[1].flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
entries[1].eax = ENTRY2_EAX;
entries[1].ebx = ENTRY2_EBX;
entries[1].ecx = ENTRY2_ECX;
entries[1].edx = ENTRY2_EDX;
return crosvm_vcpu_set_cpuid(vcpu, 2, entries);
}
int handle_vpcu_evt(struct crosvm_vcpu *vcpu, struct crosvm_vcpu_event evt) {
if (evt.kind == CROSVM_VCPU_EVENT_KIND_IO_ACCESS &&
evt.io_access.address_space == CROSVM_ADDRESS_SPACE_MMIO &&
evt.io_access.address == KILL_ADDRESS &&
evt.io_access.is_write &&
evt.io_access.length == 1 &&
evt.io_access.data[0] == 1)
{
uint64_t dummy = 1;
write(g_kill_evt, &dummy, sizeof(dummy));
return 1;
}
return 0;
}
int check_result(struct crosvm *vcpu, void *memory) {
uint32_t *mem = (uint32_t*)memory;
if (mem[0] != ENTRY1_EAX) {
fprintf(stderr, "entry 1 eax has unexpected value: 0x%x\n", mem[0]);
return 1;
}
if (mem[1] != ENTRY1_EBX) {
fprintf(stderr, "entry 1 ebx has unexpected value: 0x%x\n", mem[1]);
return 1;
}
if (mem[2] != ENTRY1_ECX) {
fprintf(stderr, "entry 1 ecx has unexpected value: 0x%x\n", mem[2]);
return 1;
}
if (mem[3] != ENTRY1_EDX) {
fprintf(stderr, "entry 1 edx has unexpected value: 0x%x\n", mem[3]);
return 1;
}
if (mem[4] != ENTRY2_EAX) {
fprintf(stderr, "entry 2 eax has unexpected value: 0x%x\n", mem[4]);
return 1;
}
if (mem[5] != ENTRY2_EBX) {
fprintf(stderr, "entry 2 ebx has unexpected value: 0x%x\n", mem[5]);
return 1;
}
if (mem[6] != ENTRY2_ECX) {
fprintf(stderr, "entry 2 ecx has unexpected value: 0x%x\n", mem[6]);
return 1;
}
if (mem[7] != ENTRY2_EDX) {
fprintf(stderr, "entry 2 edx has unexpected value: 0x%x\n", mem[7]);
return 1;
}
return 0;
}"#,
..Default::default()
};
test_mini_plugin(&mini_plugin);
}
#[test]
fn test_vcpu_state_manipulation() {
let mini_plugin = MiniPlugin {
assembly_src: "org 0x1000
bits 16
mov byte [0x3000], 1",
src: r#"
#define KILL_ADDRESS 0x3000
int g_kill_evt;
bool success = false;
int setup_vm(struct crosvm *crosvm, void *mem) {
g_kill_evt = crosvm_get_shutdown_eventfd(crosvm);
crosvm_reserve_range(crosvm, CROSVM_ADDRESS_SPACE_MMIO, KILL_ADDRESS, 1);
return 0;
}
int handle_vpcu_init(struct crosvm_vcpu *vcpu, struct kvm_regs *regs,
struct kvm_sregs *sregs)
{
int ret;
struct kvm_lapic_state lapic;
ret = crosvm_vcpu_get_lapic_state(vcpu, &lapic);
if (ret < 0) {
fprintf(stderr, "failed to get initial LAPIC state: %d\n", ret);
return 1;
}
ret = crosvm_vcpu_set_lapic_state(vcpu, &lapic);
if (ret < 0) {
fprintf(stderr, "failed to update LAPIC state: %d\n", ret);
return 1;
}
ret = crosvm_vcpu_get_lapic_state(vcpu, &lapic);
if (ret < 0) {
fprintf(stderr, "failed to get updated LAPIC state: %d\n", ret);
return 1;
}
struct kvm_mp_state mp_state;
ret = crosvm_vcpu_get_mp_state(vcpu, &mp_state);
if (ret < 0) {
fprintf(stderr, "failed to get initial MP state: %d\n", ret);
return 1;
}
ret = crosvm_vcpu_set_mp_state(vcpu, &mp_state);
if (ret < 0) {
fprintf(stderr, "failed to update MP state: %d\n", ret);
return 1;
}
struct kvm_vcpu_events events;
ret = crosvm_vcpu_get_vcpu_events(vcpu, &events);
if (ret < 0) {
fprintf(stderr, "failed to get VCPU events: %d\n", ret);
return 1;
}
ret = crosvm_vcpu_set_vcpu_events(vcpu, &events);
if (ret < 0) {
fprintf(stderr, "failed to set VCPU events: %d\n", ret);
return 1;
}
success = true;
return 0;
}
int handle_vpcu_evt(struct crosvm_vcpu *vcpu, struct crosvm_vcpu_event evt) {
if (evt.kind == CROSVM_VCPU_EVENT_KIND_IO_ACCESS &&
evt.io_access.address_space == CROSVM_ADDRESS_SPACE_MMIO &&
evt.io_access.address == KILL_ADDRESS &&
evt.io_access.is_write &&
evt.io_access.length == 1 &&
evt.io_access.data[0] == 1)
{
uint64_t dummy = 1;
write(g_kill_evt, &dummy, sizeof(dummy));
return 1;
}
return 0;
}
int check_result(struct crosvm *vcpu, void *mem) {
if (!success) {
fprintf(stderr, "test failed\n");
return 1;
}
return 0;
}"#,
..Default::default()
};
test_mini_plugin(&mini_plugin);
}