This introduces a `MergedTreeBuilder` type, which takes a set of base
trees and overrides. The idea is that it will be able to write
multiple trees or a legacy tree. For now, it's only able to write
legacy trees. To show that it works, the working copy's snaphotting
code has been updated to use it.
We currently represent the root tree id in a commit by `Merge<TreeId>`
plus a boolean `uses_tree_conflict_format`. It's better to use an enum
for that. That makes it harder to forget to check which type of tree
it is, and it makes it impossible to store a legacy tree with multiple
ids (as we could with `uses_tree_conflict_format=false`,
`root_tree=Merge::new(...)`).
Maybe more importantly, we're also going to want to pass around this
information in most places where we currently pass a single `TreeId`,
and passing two separate values would be annoying.
Unlike the git backend, we don't need to support path-level conflicts
for existing repos because we don't care about compatibility with
existing repos using the native backend. However, we still need to
support both formats until all code paths are able to handle
tree-level conflicts.
As #2165 showed, when diffing two `MergedTree::Legacy` variants (or
one of each variant) and re recurse into a subtree, we need to treat
that as a legacy tree too, so we expand `TreeValue::Conflict`s found
in the diff.
This converts `TreeDiffIterator::tree()` and
`TreeDiffIterator::single_tree()` into associated functions and passes
in the `&MergedTree` into the former. This prepares for fixing #2165,
and it removes the need for the `TreeDiffIterator::store` field.
This is what I proposed in #2095. @ is now an operator to concatenate symbols.
Unlike the other operators, lhs/rhs of @ is not a target of alias substitution.
'x' in 'x@y' doesn't look like a named variable, though it's technically
possible to allow definition of an alias expanded to a symbol of specific remote
or vice versa. This will probably apply to the kind:pattern syntax, where
aliases are expanded due to the current implementation restriction. I've added
a TODO comment about that.
I'm going to change the parsing rule of name@remote, and @ will no longer be
included in a symbol identifier. I could add a separate test for remote symbols,
but I think it's better to write tests that cover both "x"@"y" and "x@y" paths.
`itertools::interleave()` does exactly what we want for
`Merge::iter()`. I had just not thought to look for it
before. Hopefully it's not noticeably slow.
An alternative name for it would be `arity()`, but `num_sides()`
probably more clearly says that it's not about the number of removes
or the total number of terms.
We were using `current_tree()` only for an assertion where we were
walking its entries. Now that `MergedTree` supports that, we can
replace `current_tree()` by `current_merged_tree()`.
There's more work needed before the working copy can fully work with
tree-level conflicts. We still need to be able to store multiple tree
ids in the `tree_state` file, and we need to be able to create
multiple trees instead of writing conflict objects to the backend.
To support tree-level conflicts, we're going to need to update the
working copy from one `MergedTree` to another. We're going need to
store multiple tree ids in the `tree_state` file. This patch gets us
closer to that by getting the diff from `MergedTree`s`, even though we
assume that they are legacy trees for now, so we can write to the
single-tree `tree_state` file.
If we're going to be able to replace most instances of `Tree` by
`MergedTree`, we'll need to be able to diff two `MergedTree`s. This
implements support for that. The implementation copies a lot from the
diff iterator we have for `Tree`. I suspect we should be able to reuse
some of the code by introducing some traits that can then be
implemented by both `Tree` and `MergedTree`. I've left a TODO about
that.
When we do an update between two `MergedTree` instances, we'll get
diffs between two `Merge<Option<TreeValue>>`. This commit prepares for
that by changing the type of the `before` and `after` arguments we
pass into the closure in `update()`.
I think it's a little easier to follow if we don't update the stats in
the large callback. It also reduces the risk of forgetting to update
the stats in some case (like in the exec-bit-optimization case I just
removed).
When updating the working copy from one tree to another, if only the
executable bit has changed between the two trees, we set the
executable bit on the file without touching its contents. The
optimization probably gets used quite rarely. Maybe it's even so
rarely that it's a pessimization overall. Perhaps its value lies more
in that we avoid updating the file's mtime unnecessarily. Either way,
I'm about to change this code to use `Merge<Option<TreeValue>>` and
that will make this block more complex. I don't think it's worth the
complexity even it provides some small benefit sometimes.
Many of the `TreeBuilder` users have an `Option<TreeValue>` and call
either `set()` or `remove()` or the builder depending on whether the
value is present. Let's centralize this logic in a new
`TreeBuilder::set_or_remove()`.
One of the error types that I later created embedded `BackendError`, but `clippy` complained that the size of the type was too large. This helps address that.
The VS Code "Better TOML" plugin (which I think most of our VS Code developers use?) doesn't support the `x.y = z` syntax at the top level, even though it's valid TOML.
This is also useful if we ever want to add additional properties in different sub-crates (although unlikely for the near future).
When the main `TreeState::snapshot()` thread doesn't receive any
updated tree entries over the channel, it correctly doesn't write a
new tree. However, it also doesn't write the working copy state file
(`.jj/working_copy/tree_state`). This resulted in performance
regression in 3f97a6da78. From that commit, repeated snapshotting
would have to re-read all files from disk because it didn't remember
the updated mtime from the previous time.
This patch fixes the bug by also writing the file if there were any
new file states.
This doesn't seem to make any difference right now, but it will if we
write the state file when there are mtime-only changes, which we
currently don't do.
`revset::parse()` already has a `RevsetWorkspaceContext` argument, so
I think it makes sense to put that and the other context arguments
into a larger `RevsetParseContext` object.