jj/src/template_parser.rs
Yuya Nishihara 3124444d24 templater: add list.map(|x| ...) operation
This involves a little hack to insert a lambda parameter 'x' to be used at
keyword position. If the template language were dynamically typed (and were
interpreted), .map() implementation would be simpler. I considered that, but
interpreter version has its own warts (late error reporting, uneasy to cache
static object, etc.), and I don't think the current template engine is
complex enough to rewrite from scratch.

.map() returns template, which can't be join()-ed. This will be fixed later.
2023-03-18 12:04:00 +09:00

1148 lines
40 KiB
Rust

// Copyright 2020 The Jujutsu Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use std::num::ParseIntError;
use std::{error, fmt};
use itertools::Itertools as _;
use pest::iterators::{Pair, Pairs};
use pest::Parser;
use pest_derive::Parser;
use thiserror::Error;
#[derive(Parser)]
#[grammar = "template.pest"]
struct TemplateParser;
pub type TemplateParseResult<T> = Result<T, TemplateParseError>;
#[derive(Clone, Debug)]
pub struct TemplateParseError {
kind: TemplateParseErrorKind,
pest_error: Box<pest::error::Error<Rule>>,
origin: Option<Box<TemplateParseError>>,
}
#[derive(Clone, Debug, Eq, Error, PartialEq)]
pub enum TemplateParseErrorKind {
#[error("Syntax error")]
SyntaxError,
#[error("Invalid integer literal: {0}")]
ParseIntError(#[source] ParseIntError),
#[error(r#"Keyword "{0}" doesn't exist"#)]
NoSuchKeyword(String),
#[error(r#"Function "{0}" doesn't exist"#)]
NoSuchFunction(String),
#[error(r#"Method "{name}" doesn't exist for type "{type_name}""#)]
NoSuchMethod { type_name: String, name: String },
#[error(r#"Function "{name}": {message}"#)]
InvalidArguments { name: String, message: String },
#[error("Redefinition of function parameter")]
RedefinedFunctionParameter,
#[error("{0}")]
UnexpectedExpression(String),
#[error(r#"Alias "{0}" cannot be expanded"#)]
BadAliasExpansion(String),
#[error(r#"Alias "{0}" expanded recursively"#)]
RecursiveAlias(String),
}
impl TemplateParseError {
pub fn with_span(kind: TemplateParseErrorKind, span: pest::Span<'_>) -> Self {
let pest_error = Box::new(pest::error::Error::new_from_span(
pest::error::ErrorVariant::CustomError {
message: kind.to_string(),
},
span,
));
TemplateParseError {
kind,
pest_error,
origin: None,
}
}
pub fn with_span_and_origin(
kind: TemplateParseErrorKind,
span: pest::Span<'_>,
origin: Self,
) -> Self {
let pest_error = Box::new(pest::error::Error::new_from_span(
pest::error::ErrorVariant::CustomError {
message: kind.to_string(),
},
span,
));
TemplateParseError {
kind,
pest_error,
origin: Some(Box::new(origin)),
}
}
pub fn no_such_keyword(name: impl Into<String>, span: pest::Span<'_>) -> Self {
TemplateParseError::with_span(TemplateParseErrorKind::NoSuchKeyword(name.into()), span)
}
pub fn no_such_function(function: &FunctionCallNode) -> Self {
TemplateParseError::with_span(
TemplateParseErrorKind::NoSuchFunction(function.name.to_owned()),
function.name_span,
)
}
pub fn no_such_method(type_name: impl Into<String>, function: &FunctionCallNode) -> Self {
TemplateParseError::with_span(
TemplateParseErrorKind::NoSuchMethod {
type_name: type_name.into(),
name: function.name.to_owned(),
},
function.name_span,
)
}
pub fn invalid_arguments(function: &FunctionCallNode, message: impl Into<String>) -> Self {
TemplateParseError::with_span(
TemplateParseErrorKind::InvalidArguments {
name: function.name.to_owned(),
message: message.into(),
},
function.args_span,
)
}
pub fn expected_type(type_name: &str, span: pest::Span<'_>) -> Self {
let message = format!(r#"Expected expression of type "{type_name}""#);
TemplateParseError::unexpected_expression(message, span)
}
pub fn unexpected_expression(message: impl Into<String>, span: pest::Span<'_>) -> Self {
TemplateParseError::with_span(
TemplateParseErrorKind::UnexpectedExpression(message.into()),
span,
)
}
pub fn within_alias_expansion(self, id: TemplateAliasId<'_>, span: pest::Span<'_>) -> Self {
TemplateParseError::with_span_and_origin(
TemplateParseErrorKind::BadAliasExpansion(id.to_string()),
span,
self,
)
}
/// Original parsing error which typically occurred in an alias expression.
pub fn origin(&self) -> Option<&Self> {
self.origin.as_deref()
}
}
impl From<pest::error::Error<Rule>> for TemplateParseError {
fn from(err: pest::error::Error<Rule>) -> Self {
TemplateParseError {
kind: TemplateParseErrorKind::SyntaxError,
pest_error: Box::new(err),
origin: None,
}
}
}
impl fmt::Display for TemplateParseError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.pest_error.fmt(f)
}
}
impl error::Error for TemplateParseError {
fn source(&self) -> Option<&(dyn error::Error + 'static)> {
if let Some(e) = self.origin() {
return Some(e as &dyn error::Error);
}
match &self.kind {
// SyntaxError is a wrapper for pest::error::Error.
TemplateParseErrorKind::SyntaxError => Some(&self.pest_error as &dyn error::Error),
// Otherwise the kind represents this error.
e => e.source(),
}
}
}
/// AST node without type or name checking.
#[derive(Clone, Debug, PartialEq)]
pub struct ExpressionNode<'i> {
pub kind: ExpressionKind<'i>,
pub span: pest::Span<'i>,
}
impl<'i> ExpressionNode<'i> {
fn new(kind: ExpressionKind<'i>, span: pest::Span<'i>) -> Self {
ExpressionNode { kind, span }
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum ExpressionKind<'i> {
Identifier(&'i str),
Integer(i64),
String(String),
Concat(Vec<ExpressionNode<'i>>),
FunctionCall(FunctionCallNode<'i>),
MethodCall(MethodCallNode<'i>),
Lambda(LambdaNode<'i>),
/// Identity node to preserve the span in the source template text.
AliasExpanded(TemplateAliasId<'i>, Box<ExpressionNode<'i>>),
}
#[derive(Clone, Debug, PartialEq)]
pub struct FunctionCallNode<'i> {
pub name: &'i str,
pub name_span: pest::Span<'i>,
pub args: Vec<ExpressionNode<'i>>,
pub args_span: pest::Span<'i>,
}
#[derive(Clone, Debug, PartialEq)]
pub struct MethodCallNode<'i> {
pub object: Box<ExpressionNode<'i>>,
pub function: FunctionCallNode<'i>,
}
#[derive(Clone, Debug, PartialEq)]
pub struct LambdaNode<'i> {
pub params: Vec<&'i str>,
pub params_span: pest::Span<'i>,
pub body: Box<ExpressionNode<'i>>,
}
fn parse_string_literal(pair: Pair<Rule>) -> String {
assert_eq!(pair.as_rule(), Rule::literal);
let mut result = String::new();
for part in pair.into_inner() {
match part.as_rule() {
Rule::raw_literal => {
result.push_str(part.as_str());
}
Rule::escape => match part.as_str().as_bytes()[1] as char {
'"' => result.push('"'),
'\\' => result.push('\\'),
't' => result.push('\t'),
'r' => result.push('\r'),
'n' => result.push('\n'),
char => panic!("invalid escape: \\{char:?}"),
},
_ => panic!("unexpected part of string: {part:?}"),
}
}
result
}
fn parse_formal_parameters(params_pair: Pair<Rule>) -> TemplateParseResult<Vec<&str>> {
assert_eq!(params_pair.as_rule(), Rule::formal_parameters);
let params_span = params_pair.as_span();
let params = params_pair
.into_inner()
.map(|pair| match pair.as_rule() {
Rule::identifier => pair.as_str(),
r => panic!("unexpected formal parameter rule {r:?}"),
})
.collect_vec();
if params.iter().all_unique() {
Ok(params)
} else {
Err(TemplateParseError::with_span(
TemplateParseErrorKind::RedefinedFunctionParameter,
params_span,
))
}
}
fn parse_function_call_node(pair: Pair<Rule>) -> TemplateParseResult<FunctionCallNode> {
assert_eq!(pair.as_rule(), Rule::function);
let mut inner = pair.into_inner();
let name = inner.next().unwrap();
let args_pair = inner.next().unwrap();
let args_span = args_pair.as_span();
assert_eq!(name.as_rule(), Rule::identifier);
assert_eq!(args_pair.as_rule(), Rule::function_arguments);
let args = args_pair
.into_inner()
.map(parse_template_node)
.try_collect()?;
Ok(FunctionCallNode {
name: name.as_str(),
name_span: name.as_span(),
args,
args_span,
})
}
fn parse_lambda_node(pair: Pair<Rule>) -> TemplateParseResult<LambdaNode> {
assert_eq!(pair.as_rule(), Rule::lambda);
let mut inner = pair.into_inner();
let params_pair = inner.next().unwrap();
let params_span = params_pair.as_span();
let body_pair = inner.next().unwrap();
let params = parse_formal_parameters(params_pair)?;
let body = parse_template_node(body_pair)?;
Ok(LambdaNode {
params,
params_span,
body: Box::new(body),
})
}
fn parse_term_node(pair: Pair<Rule>) -> TemplateParseResult<ExpressionNode> {
assert_eq!(pair.as_rule(), Rule::term);
let mut inner = pair.into_inner();
let expr = inner.next().unwrap();
let span = expr.as_span();
let primary = match expr.as_rule() {
Rule::literal => {
let text = parse_string_literal(expr);
ExpressionNode::new(ExpressionKind::String(text), span)
}
Rule::integer_literal => {
let value = expr.as_str().parse().map_err(|err| {
TemplateParseError::with_span(TemplateParseErrorKind::ParseIntError(err), span)
})?;
ExpressionNode::new(ExpressionKind::Integer(value), span)
}
Rule::identifier => ExpressionNode::new(ExpressionKind::Identifier(expr.as_str()), span),
Rule::function => {
let function = parse_function_call_node(expr)?;
ExpressionNode::new(ExpressionKind::FunctionCall(function), span)
}
Rule::lambda => {
let lambda = parse_lambda_node(expr)?;
ExpressionNode::new(ExpressionKind::Lambda(lambda), span)
}
Rule::template => parse_template_node(expr)?,
other => panic!("unexpected term: {other:?}"),
};
inner.try_fold(primary, |object, chain| {
assert_eq!(chain.as_rule(), Rule::function);
let span = chain.as_span();
let method = MethodCallNode {
object: Box::new(object),
function: parse_function_call_node(chain)?,
};
Ok(ExpressionNode::new(
ExpressionKind::MethodCall(method),
span,
))
})
}
fn parse_template_node(pair: Pair<Rule>) -> TemplateParseResult<ExpressionNode> {
assert_eq!(pair.as_rule(), Rule::template);
let span = pair.as_span();
let inner = pair.into_inner();
let mut nodes: Vec<_> = inner.map(parse_term_node).try_collect()?;
if nodes.len() == 1 {
Ok(nodes.pop().unwrap())
} else {
Ok(ExpressionNode::new(ExpressionKind::Concat(nodes), span))
}
}
/// Parses text into AST nodes. No type/name checking is made at this stage.
pub fn parse_template(template_text: &str) -> TemplateParseResult<ExpressionNode> {
let mut pairs: Pairs<Rule> = TemplateParser::parse(Rule::program, template_text)?;
let first_pair = pairs.next().unwrap();
if first_pair.as_rule() == Rule::EOI {
let span = first_pair.as_span();
Ok(ExpressionNode::new(ExpressionKind::Concat(vec![]), span))
} else {
parse_template_node(first_pair)
}
}
#[derive(Clone, Debug, Default)]
pub struct TemplateAliasesMap {
symbol_aliases: HashMap<String, String>,
function_aliases: HashMap<String, (Vec<String>, String)>,
}
impl TemplateAliasesMap {
pub fn new() -> Self {
Self::default()
}
/// Adds new substitution rule `decl = defn`.
///
/// Returns error if `decl` is invalid. The `defn` part isn't checked. A bad
/// `defn` will be reported when the alias is substituted.
pub fn insert(
&mut self,
decl: impl AsRef<str>,
defn: impl Into<String>,
) -> TemplateParseResult<()> {
match TemplateAliasDeclaration::parse(decl.as_ref())? {
TemplateAliasDeclaration::Symbol(name) => {
self.symbol_aliases.insert(name, defn.into());
}
TemplateAliasDeclaration::Function(name, params) => {
self.function_aliases.insert(name, (params, defn.into()));
}
}
Ok(())
}
fn get_symbol(&self, name: &str) -> Option<(TemplateAliasId<'_>, &str)> {
self.symbol_aliases
.get_key_value(name)
.map(|(name, defn)| (TemplateAliasId::Symbol(name), defn.as_ref()))
}
fn get_function(&self, name: &str) -> Option<(TemplateAliasId<'_>, &[String], &str)> {
self.function_aliases
.get_key_value(name)
.map(|(name, (params, defn))| {
(
TemplateAliasId::Function(name),
params.as_ref(),
defn.as_ref(),
)
})
}
}
/// Parsed declaration part of alias rule.
#[derive(Clone, Debug)]
enum TemplateAliasDeclaration {
Symbol(String),
Function(String, Vec<String>),
}
impl TemplateAliasDeclaration {
fn parse(source: &str) -> TemplateParseResult<Self> {
let mut pairs = TemplateParser::parse(Rule::alias_declaration, source)?;
let first = pairs.next().unwrap();
match first.as_rule() {
Rule::identifier => Ok(TemplateAliasDeclaration::Symbol(first.as_str().to_owned())),
Rule::function_alias_declaration => {
let mut inner = first.into_inner();
let name_pair = inner.next().unwrap();
let params_pair = inner.next().unwrap();
assert_eq!(name_pair.as_rule(), Rule::identifier);
let name = name_pair.as_str().to_owned();
let params = parse_formal_parameters(params_pair)?
.into_iter()
.map(|s| s.to_owned())
.collect();
Ok(TemplateAliasDeclaration::Function(name, params))
}
r => panic!("unexpected alias declaration rule {r:?}"),
}
}
}
/// Borrowed reference to identify alias expression.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum TemplateAliasId<'a> {
Symbol(&'a str),
Function(&'a str),
}
impl fmt::Display for TemplateAliasId<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
TemplateAliasId::Symbol(name) => write!(f, "{name}"),
TemplateAliasId::Function(name) => write!(f, "{name}()"),
}
}
}
/// Expand aliases recursively.
pub fn expand_aliases<'i>(
node: ExpressionNode<'i>,
aliases_map: &'i TemplateAliasesMap,
) -> TemplateParseResult<ExpressionNode<'i>> {
#[derive(Clone, Copy, Debug)]
struct State<'a, 'i> {
aliases_map: &'i TemplateAliasesMap,
aliases_expanding: &'a [TemplateAliasId<'a>],
locals: &'a HashMap<&'a str, ExpressionNode<'i>>,
}
fn expand_defn<'i>(
id: TemplateAliasId<'i>,
defn: &'i str,
locals: &HashMap<&str, ExpressionNode<'i>>,
span: pest::Span<'i>,
state: State<'_, 'i>,
) -> TemplateParseResult<ExpressionNode<'i>> {
// The stack should be short, so let's simply do linear search and duplicate.
if state.aliases_expanding.contains(&id) {
return Err(TemplateParseError::with_span(
TemplateParseErrorKind::RecursiveAlias(id.to_string()),
span,
));
}
let mut aliases_expanding = state.aliases_expanding.to_vec();
aliases_expanding.push(id);
let expanding_state = State {
aliases_map: state.aliases_map,
aliases_expanding: &aliases_expanding,
locals,
};
// Parsed defn could be cached if needed.
parse_template(defn)
.and_then(|node| expand_node(node, expanding_state))
.map(|node| {
ExpressionNode::new(ExpressionKind::AliasExpanded(id, Box::new(node)), span)
})
.map_err(|e| e.within_alias_expansion(id, span))
}
fn expand_list<'i>(
nodes: Vec<ExpressionNode<'i>>,
state: State<'_, 'i>,
) -> TemplateParseResult<Vec<ExpressionNode<'i>>> {
nodes
.into_iter()
.map(|node| expand_node(node, state))
.try_collect()
}
fn expand_function_call<'i>(
function: FunctionCallNode<'i>,
state: State<'_, 'i>,
) -> TemplateParseResult<FunctionCallNode<'i>> {
Ok(FunctionCallNode {
name: function.name,
name_span: function.name_span,
args: expand_list(function.args, state)?,
args_span: function.args_span,
})
}
fn expand_node<'i>(
mut node: ExpressionNode<'i>,
state: State<'_, 'i>,
) -> TemplateParseResult<ExpressionNode<'i>> {
match node.kind {
ExpressionKind::Identifier(name) => {
if let Some(node) = state.locals.get(name) {
Ok(node.clone())
} else if let Some((id, defn)) = state.aliases_map.get_symbol(name) {
let locals = HashMap::new(); // Don't spill out the current scope
expand_defn(id, defn, &locals, node.span, state)
} else {
Ok(node)
}
}
ExpressionKind::Integer(_) => Ok(node),
ExpressionKind::String(_) => Ok(node),
ExpressionKind::Concat(nodes) => {
node.kind = ExpressionKind::Concat(expand_list(nodes, state)?);
Ok(node)
}
ExpressionKind::FunctionCall(function) => {
if let Some((id, params, defn)) = state.aliases_map.get_function(function.name) {
if function.args.len() != params.len() {
return Err(TemplateParseError::invalid_arguments(
&function,
format!("Expected {} arguments", params.len()),
));
}
// Resolve arguments in the current scope, and pass them in to the alias
// expansion scope.
let args = expand_list(function.args, state)?;
let locals = params.iter().map(|s| s.as_str()).zip(args).collect();
expand_defn(id, defn, &locals, node.span, state)
} else {
node.kind =
ExpressionKind::FunctionCall(expand_function_call(function, state)?);
Ok(node)
}
}
ExpressionKind::MethodCall(method) => {
node.kind = ExpressionKind::MethodCall(MethodCallNode {
object: Box::new(expand_node(*method.object, state)?),
function: expand_function_call(method.function, state)?,
});
Ok(node)
}
ExpressionKind::Lambda(lambda) => {
node.kind = ExpressionKind::Lambda(LambdaNode {
params: lambda.params,
params_span: lambda.params_span,
body: Box::new(expand_node(*lambda.body, state)?),
});
Ok(node)
}
ExpressionKind::AliasExpanded(id, subst) => {
// Just in case the original tree contained AliasExpanded node.
let subst = Box::new(expand_node(*subst, state)?);
node.kind = ExpressionKind::AliasExpanded(id, subst);
Ok(node)
}
}
}
let state = State {
aliases_map,
aliases_expanding: &[],
locals: &HashMap::new(),
};
expand_node(node, state)
}
/// Parses text into AST nodes, and expands aliases.
///
/// No type/name checking is made at this stage.
pub fn parse<'i>(
template_text: &'i str,
aliases_map: &'i TemplateAliasesMap,
) -> TemplateParseResult<ExpressionNode<'i>> {
let node = parse_template(template_text)?;
expand_aliases(node, aliases_map)
}
pub fn expect_no_arguments(function: &FunctionCallNode) -> TemplateParseResult<()> {
if function.args.is_empty() {
Ok(())
} else {
Err(TemplateParseError::invalid_arguments(
function,
"Expected 0 arguments",
))
}
}
/// Extracts exactly N required arguments.
pub fn expect_exact_arguments<'a, 'i, const N: usize>(
function: &'a FunctionCallNode<'i>,
) -> TemplateParseResult<&'a [ExpressionNode<'i>; N]> {
function.args.as_slice().try_into().map_err(|_| {
TemplateParseError::invalid_arguments(function, format!("Expected {N} arguments"))
})
}
/// Extracts N required arguments and remainders.
pub fn expect_some_arguments<'a, 'i, const N: usize>(
function: &'a FunctionCallNode<'i>,
) -> TemplateParseResult<(&'a [ExpressionNode<'i>; N], &'a [ExpressionNode<'i>])> {
if function.args.len() >= N {
let (required, rest) = function.args.split_at(N);
Ok((required.try_into().unwrap(), rest))
} else {
Err(TemplateParseError::invalid_arguments(
function,
format!("Expected at least {N} arguments"),
))
}
}
/// Extracts N required arguments and M optional arguments.
pub fn expect_arguments<'a, 'i, const N: usize, const M: usize>(
function: &'a FunctionCallNode<'i>,
) -> TemplateParseResult<(
&'a [ExpressionNode<'i>; N],
[Option<&'a ExpressionNode<'i>>; M],
)> {
let count_range = N..=(N + M);
if count_range.contains(&function.args.len()) {
let (required, rest) = function.args.split_at(N);
let mut optional = rest.iter().map(Some).collect_vec();
optional.resize(M, None);
Ok((required.try_into().unwrap(), optional.try_into().unwrap()))
} else {
Err(TemplateParseError::invalid_arguments(
function,
format!("Expected {min} to {max} arguments", min = N, max = N + M),
))
}
}
/// Applies the given function if the `node` is a string literal.
pub fn expect_string_literal_with<'a, 'i, T>(
node: &'a ExpressionNode<'i>,
f: impl FnOnce(&'a str, pest::Span<'i>) -> TemplateParseResult<T>,
) -> TemplateParseResult<T> {
match &node.kind {
ExpressionKind::String(s) => f(s, node.span),
ExpressionKind::Identifier(_)
| ExpressionKind::Integer(_)
| ExpressionKind::Concat(_)
| ExpressionKind::FunctionCall(_)
| ExpressionKind::MethodCall(_)
| ExpressionKind::Lambda(_) => Err(TemplateParseError::unexpected_expression(
"Expected string literal",
node.span,
)),
ExpressionKind::AliasExpanded(id, subst) => expect_string_literal_with(subst, f)
.map_err(|e| e.within_alias_expansion(*id, node.span)),
}
}
/// Applies the given function if the `node` is a lambda.
pub fn expect_lambda_with<'a, 'i, T>(
node: &'a ExpressionNode<'i>,
f: impl FnOnce(&'a LambdaNode<'i>, pest::Span<'i>) -> TemplateParseResult<T>,
) -> TemplateParseResult<T> {
match &node.kind {
ExpressionKind::Lambda(lambda) => f(lambda, node.span),
ExpressionKind::String(_)
| ExpressionKind::Identifier(_)
| ExpressionKind::Integer(_)
| ExpressionKind::Concat(_)
| ExpressionKind::FunctionCall(_)
| ExpressionKind::MethodCall(_) => Err(TemplateParseError::unexpected_expression(
"Expected lambda expression",
node.span,
)),
ExpressionKind::AliasExpanded(id, subst) => {
expect_lambda_with(subst, f).map_err(|e| e.within_alias_expansion(*id, node.span))
}
}
}
#[cfg(test)]
mod tests {
use assert_matches::assert_matches;
use super::*;
#[derive(Debug)]
struct WithTemplateAliasesMap(TemplateAliasesMap);
impl WithTemplateAliasesMap {
fn parse<'i>(&'i self, template_text: &'i str) -> TemplateParseResult<ExpressionNode<'i>> {
parse(template_text, &self.0)
}
fn parse_normalized<'i>(
&'i self,
template_text: &'i str,
) -> TemplateParseResult<ExpressionNode<'i>> {
self.parse(template_text).map(normalize_tree)
}
}
fn with_aliases(
aliases: impl IntoIterator<Item = (impl AsRef<str>, impl Into<String>)>,
) -> WithTemplateAliasesMap {
let mut aliases_map = TemplateAliasesMap::new();
for (decl, defn) in aliases {
aliases_map.insert(decl, defn).unwrap();
}
WithTemplateAliasesMap(aliases_map)
}
fn parse_into_kind(template_text: &str) -> Result<ExpressionKind, TemplateParseErrorKind> {
parse_template(template_text)
.map(|node| node.kind)
.map_err(|err| err.kind)
}
fn parse_normalized(template_text: &str) -> TemplateParseResult<ExpressionNode> {
parse_template(template_text).map(normalize_tree)
}
/// Drops auxiliary data of AST so it can be compared with other node.
fn normalize_tree(node: ExpressionNode) -> ExpressionNode {
fn empty_span() -> pest::Span<'static> {
pest::Span::new("", 0, 0).unwrap()
}
fn normalize_list(nodes: Vec<ExpressionNode>) -> Vec<ExpressionNode> {
nodes.into_iter().map(normalize_tree).collect()
}
fn normalize_function_call(function: FunctionCallNode) -> FunctionCallNode {
FunctionCallNode {
name: function.name,
name_span: empty_span(),
args: normalize_list(function.args),
args_span: empty_span(),
}
}
let normalized_kind = match node.kind {
ExpressionKind::Identifier(_)
| ExpressionKind::Integer(_)
| ExpressionKind::String(_) => node.kind,
ExpressionKind::Concat(nodes) => ExpressionKind::Concat(normalize_list(nodes)),
ExpressionKind::FunctionCall(function) => {
ExpressionKind::FunctionCall(normalize_function_call(function))
}
ExpressionKind::MethodCall(method) => {
let object = Box::new(normalize_tree(*method.object));
let function = normalize_function_call(method.function);
ExpressionKind::MethodCall(MethodCallNode { object, function })
}
ExpressionKind::Lambda(lambda) => {
let body = Box::new(normalize_tree(*lambda.body));
ExpressionKind::Lambda(LambdaNode {
params: lambda.params,
params_span: empty_span(),
body,
})
}
ExpressionKind::AliasExpanded(_, subst) => normalize_tree(*subst).kind,
};
ExpressionNode {
kind: normalized_kind,
span: empty_span(),
}
}
#[test]
fn test_parse_tree_eq() {
assert_eq!(
normalize_tree(parse_template(r#" commit_id.short(1 ) ++ description"#).unwrap()),
normalize_tree(parse_template(r#"commit_id.short( 1 )++(description)"#).unwrap()),
);
assert_ne!(
normalize_tree(parse_template(r#" "ab" "#).unwrap()),
normalize_tree(parse_template(r#" "a" ++ "b" "#).unwrap()),
);
assert_ne!(
normalize_tree(parse_template(r#" "foo" ++ "0" "#).unwrap()),
normalize_tree(parse_template(r#" "foo" ++ 0 "#).unwrap()),
);
}
#[test]
fn test_parse_whitespace() {
let ascii_whitespaces: String = ('\x00'..='\x7f')
.filter(char::is_ascii_whitespace)
.collect();
assert_eq!(
parse_normalized(&format!("{ascii_whitespaces}f()")).unwrap(),
parse_normalized("f()").unwrap(),
);
}
#[test]
fn test_function_call_syntax() {
// Trailing comma isn't allowed for empty argument
assert!(parse_template(r#" "".first_line() "#).is_ok());
assert!(parse_template(r#" "".first_line(,) "#).is_err());
// Trailing comma is allowed for the last argument
assert!(parse_template(r#" "".contains("") "#).is_ok());
assert!(parse_template(r#" "".contains("",) "#).is_ok());
assert!(parse_template(r#" "".contains("" , ) "#).is_ok());
assert!(parse_template(r#" "".contains(,"") "#).is_err());
assert!(parse_template(r#" "".contains("",,) "#).is_err());
assert!(parse_template(r#" "".contains("" , , ) "#).is_err());
assert!(parse_template(r#" label("","") "#).is_ok());
assert!(parse_template(r#" label("","",) "#).is_ok());
assert!(parse_template(r#" label("",,"") "#).is_err());
}
#[test]
fn test_lambda_syntax() {
fn unwrap_lambda(node: ExpressionNode<'_>) -> LambdaNode<'_> {
match node.kind {
ExpressionKind::Lambda(lambda) => lambda,
_ => panic!("unexpected expression: {node:?}"),
}
}
let lambda = unwrap_lambda(parse_template("|| a").unwrap());
assert_eq!(lambda.params.len(), 0);
assert_eq!(lambda.body.kind, ExpressionKind::Identifier("a"));
let lambda = unwrap_lambda(parse_template("|foo| a").unwrap());
assert_eq!(lambda.params.len(), 1);
let lambda = unwrap_lambda(parse_template("|foo, b| a").unwrap());
assert_eq!(lambda.params.len(), 2);
// No body
assert!(parse_template("||").is_err());
// Binding
assert_eq!(
parse_normalized("|| x ++ y").unwrap(),
parse_normalized("|| (x ++ y)").unwrap(),
);
assert_eq!(
parse_normalized("f( || x, || y)").unwrap(),
parse_normalized("f((|| x), (|| y))").unwrap(),
);
assert_eq!(
parse_normalized("|| x ++ || y").unwrap(),
parse_normalized("|| (x ++ (|| y))").unwrap(),
);
// Trailing comma
assert!(parse_template("|,| a").is_err());
assert!(parse_template("|x,| a").is_ok());
assert!(parse_template("|x , | a").is_ok());
assert!(parse_template("|,x| a").is_err());
assert!(parse_template("| x,y,| a").is_ok());
assert!(parse_template("|x,,y| a").is_err());
// Formal parameter can't be redefined
assert_eq!(
parse_template("|x, x| a").unwrap_err().kind,
TemplateParseErrorKind::RedefinedFunctionParameter
);
}
#[test]
fn test_string_literal() {
// "\<char>" escapes
assert_eq!(
parse_into_kind(r#" "\t\r\n\"\\" "#),
Ok(ExpressionKind::String("\t\r\n\"\\".to_owned())),
);
// Invalid "\<char>" escape
assert_eq!(
parse_into_kind(r#" "\y" "#),
Err(TemplateParseErrorKind::SyntaxError),
);
}
#[test]
fn test_integer_literal() {
assert_eq!(parse_into_kind("0"), Ok(ExpressionKind::Integer(0)));
assert_eq!(parse_into_kind("(42)"), Ok(ExpressionKind::Integer(42)));
assert_eq!(
parse_into_kind("00"),
Err(TemplateParseErrorKind::SyntaxError),
);
assert_eq!(
parse_into_kind(&format!("{}", i64::MAX)),
Ok(ExpressionKind::Integer(i64::MAX)),
);
assert_matches!(
parse_into_kind(&format!("{}", (i64::MAX as u64) + 1)),
Err(TemplateParseErrorKind::ParseIntError(_))
);
}
#[test]
fn test_parse_alias_decl() {
let mut aliases_map = TemplateAliasesMap::new();
aliases_map.insert("sym", r#""is symbol""#).unwrap();
aliases_map.insert("func(a)", r#""is function""#).unwrap();
let (id, defn) = aliases_map.get_symbol("sym").unwrap();
assert_eq!(id, TemplateAliasId::Symbol("sym"));
assert_eq!(defn, r#""is symbol""#);
let (id, params, defn) = aliases_map.get_function("func").unwrap();
assert_eq!(id, TemplateAliasId::Function("func"));
assert_eq!(params, ["a"]);
assert_eq!(defn, r#""is function""#);
// Formal parameter 'a' can't be redefined
assert_eq!(
aliases_map.insert("f(a, a)", r#""""#).unwrap_err().kind,
TemplateParseErrorKind::RedefinedFunctionParameter
);
// Trailing comma isn't allowed for empty parameter
assert!(aliases_map.insert("f(,)", r#"""#).is_err());
// Trailing comma is allowed for the last parameter
assert!(aliases_map.insert("g(a,)", r#"""#).is_ok());
assert!(aliases_map.insert("h(a , )", r#"""#).is_ok());
assert!(aliases_map.insert("i(,a)", r#"""#).is_err());
assert!(aliases_map.insert("j(a,,)", r#"""#).is_err());
assert!(aliases_map.insert("k(a , , )", r#"""#).is_err());
assert!(aliases_map.insert("l(a,b,)", r#"""#).is_ok());
assert!(aliases_map.insert("m(a,,b)", r#"""#).is_err());
}
#[test]
fn test_expand_symbol_alias() {
assert_eq!(
with_aliases([("AB", "a ++ b")])
.parse_normalized("AB ++ c")
.unwrap(),
parse_normalized("(a ++ b) ++ c").unwrap(),
);
assert_eq!(
with_aliases([("AB", "a ++ b")])
.parse_normalized("if(AB, label(c, AB))")
.unwrap(),
parse_normalized("if((a ++ b), label(c, (a ++ b)))").unwrap(),
);
// Multi-level substitution.
assert_eq!(
with_aliases([("A", "BC"), ("BC", "b ++ C"), ("C", "c")])
.parse_normalized("A")
.unwrap(),
parse_normalized("b ++ c").unwrap(),
);
// Method receiver and arguments should be expanded.
assert_eq!(
with_aliases([("A", "a")])
.parse_normalized("A.f()")
.unwrap(),
parse_normalized("a.f()").unwrap(),
);
assert_eq!(
with_aliases([("A", "a"), ("B", "b")])
.parse_normalized("x.f(A, B)")
.unwrap(),
parse_normalized("x.f(a, b)").unwrap(),
);
// Lambda expression body should be expanded.
assert_eq!(
with_aliases([("A", "a")]).parse_normalized("|| A").unwrap(),
parse_normalized("|| a").unwrap(),
);
// No matter if 'A' is a formal parameter. Alias substitution isn't scoped.
// If we don't like this behavior, maybe we can turn off alias substitution
// for lambda parameters.
assert_eq!(
with_aliases([("A", "a ++ b")])
.parse_normalized("|A| A")
.unwrap(),
parse_normalized("|A| (a ++ b)").unwrap(),
);
// Infinite recursion, where the top-level error isn't of RecursiveAlias kind.
assert_eq!(
with_aliases([("A", "A")]).parse("A").unwrap_err().kind,
TemplateParseErrorKind::BadAliasExpansion("A".to_owned()),
);
assert_eq!(
with_aliases([("A", "B"), ("B", "b ++ C"), ("C", "c ++ B")])
.parse("A")
.unwrap_err()
.kind,
TemplateParseErrorKind::BadAliasExpansion("A".to_owned()),
);
// Error in alias definition.
assert_eq!(
with_aliases([("A", "a(")]).parse("A").unwrap_err().kind,
TemplateParseErrorKind::BadAliasExpansion("A".to_owned()),
);
}
#[test]
fn test_expand_function_alias() {
assert_eq!(
with_aliases([("F( )", "a")])
.parse_normalized("F()")
.unwrap(),
parse_normalized("a").unwrap(),
);
assert_eq!(
with_aliases([("F( x )", "x")])
.parse_normalized("F(a)")
.unwrap(),
parse_normalized("a").unwrap(),
);
assert_eq!(
with_aliases([("F( x, y )", "x ++ y")])
.parse_normalized("F(a, b)")
.unwrap(),
parse_normalized("a ++ b").unwrap(),
);
// Arguments should be resolved in the current scope.
assert_eq!(
with_aliases([("F(x,y)", "if(x, y)")])
.parse_normalized("F(a ++ y, b ++ x)")
.unwrap(),
parse_normalized("if((a ++ y), (b ++ x))").unwrap(),
);
// F(a) -> if(G(a), y) -> if((x ++ a), y)
assert_eq!(
with_aliases([("F(x)", "if(G(x), y)"), ("G(y)", "x ++ y")])
.parse_normalized("F(a)")
.unwrap(),
parse_normalized("if((x ++ a), y)").unwrap(),
);
// F(G(a)) -> F(x ++ a) -> if(G(x ++ a), y) -> if((x ++ (x ++ a)), y)
assert_eq!(
with_aliases([("F(x)", "if(G(x), y)"), ("G(y)", "x ++ y")])
.parse_normalized("F(G(a))")
.unwrap(),
parse_normalized("if((x ++ (x ++ a)), y)").unwrap(),
);
// Function parameter should precede the symbol alias.
assert_eq!(
with_aliases([("F(X)", "X"), ("X", "x")])
.parse_normalized("F(a) ++ X")
.unwrap(),
parse_normalized("a ++ x").unwrap(),
);
// Function parameter shouldn't be expanded in symbol alias.
assert_eq!(
with_aliases([("F(x)", "x ++ A"), ("A", "x")])
.parse_normalized("F(a)")
.unwrap(),
parse_normalized("a ++ x").unwrap(),
);
// Function and symbol aliases reside in separate namespaces.
assert_eq!(
with_aliases([("A()", "A"), ("A", "a")])
.parse_normalized("A()")
.unwrap(),
parse_normalized("a").unwrap(),
);
// Method call shouldn't be substituted by function alias.
assert_eq!(
with_aliases([("F()", "f()")])
.parse_normalized("x.F()")
.unwrap(),
parse_normalized("x.F()").unwrap(),
);
// Formal parameter shouldn't be substituted by alias parameter, but
// the expression should be substituted.
assert_eq!(
with_aliases([("F(x)", "|x| x")])
.parse_normalized("F(a ++ b)")
.unwrap(),
parse_normalized("|x| (a ++ b)").unwrap(),
);
// Invalid number of arguments.
assert_matches!(
with_aliases([("F()", "x")]).parse("F(a)").unwrap_err().kind,
TemplateParseErrorKind::InvalidArguments { .. }
);
assert_matches!(
with_aliases([("F(x)", "x")]).parse("F()").unwrap_err().kind,
TemplateParseErrorKind::InvalidArguments { .. }
);
assert_matches!(
with_aliases([("F(x,y)", "x ++ y")])
.parse("F(a,b,c)")
.unwrap_err()
.kind,
TemplateParseErrorKind::InvalidArguments { .. }
);
// Infinite recursion, where the top-level error isn't of RecursiveAlias kind.
assert_eq!(
with_aliases([("F(x)", "G(x)"), ("G(x)", "H(x)"), ("H(x)", "F(x)")])
.parse("F(a)")
.unwrap_err()
.kind,
TemplateParseErrorKind::BadAliasExpansion("F()".to_owned()),
);
}
}