jj/lib/src/revset_graph_iterator.rs
Martin von Zweigbergk 0747da0491 revset_graph_iterator: add a mode for generating reverse graph
The request to show the log output with more recent commits at the
bottom comes up once in a while (among Mercurial users, and now also
for jj from @arxanas). It's pretty easy to implement by adding an
adapter to the current `RevsetGraphIterator`. It works by first
collecting all nodes and edges into a vector and then yielding them in
reverse order and with reversed edges. That means it's no longer lazy,
but that seems fine since the feature is optional. Also, it's only the
subset of nodes that are in the selected revset that will be
collected.

Making the CLI use the new iterator adapter will come in a later
patch.
2022-05-15 05:17:54 -07:00

352 lines
13 KiB
Rust

// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cmp::min;
use std::collections::{BTreeMap, HashMap, HashSet};
use crate::index::{IndexEntry, IndexPosition};
use crate::nightly_shims::BTreeMapExt;
use crate::revset::RevsetIterator;
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub struct RevsetGraphEdge {
pub target: IndexPosition,
pub edge_type: RevsetGraphEdgeType,
}
impl RevsetGraphEdge {
pub fn missing(target: IndexPosition) -> Self {
Self {
target,
edge_type: RevsetGraphEdgeType::Missing,
}
}
pub fn direct(target: IndexPosition) -> Self {
Self {
target,
edge_type: RevsetGraphEdgeType::Direct,
}
}
pub fn indirect(target: IndexPosition) -> Self {
Self {
target,
edge_type: RevsetGraphEdgeType::Indirect,
}
}
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub enum RevsetGraphEdgeType {
Missing,
Direct,
Indirect,
}
// Given an iterator over some set of revisions, yields the same revisions with
// associated edge types.
//
// If a revision's parent is in the input set, then the edge will be "direct".
// Otherwise, there will be one "indirect" edge for each closest ancestor in the
// set, and one "missing" edge for each edge leading outside the set.
//
// Example (uppercase characters are in the input set):
//
// A A
// |\ |\
// B c B :
// |\| => |\:
// d E ~ E
// |/ ~
// root
//
// The implementation works by walking the input iterator in one commit at a
// time. It then considers all parents of the commit. It looks ahead in the
// input iterator far enough that all the parents will have been consumed if
// they are in the input (and puts them away so we can emit them later). If a
// parent of the current commit is not in the input set (i.e. it was not
// in the look-ahead), we walk these external commits until we end up back back
// in the input set. That walk may result in consuming more elements from the
// input iterator. In the example above, when we consider "A", we will initially
// look ahead to "B" and "c". When we consider edges from the external commit
// "c", we will further consume the input iterator to "E".
//
// Missing edges are those that don't lead back into the input set. If all edges
// from an external commit are missing, we consider the edge to that edge to
// also be missing. In the example above, that means that "B" will have a
// missing edge to "d" rather than to the root.
//
// The iterator can be configured to skip transitive edges that it would
// otherwise return. In this mode (which is the default), the edge from "A" to
// "E" in the example above would be excluded because there's also a transitive
// path from "A" to "E" via "B". The implementation of that mode
// adds a filtering step just before yielding the edges for a commit. The
// filtering works doing a DFS in the simplified graph. That may require even
// more look-ahead. Consider this example (uppercase characters are in the input
// set):
//
// J
// /|
// | i
// | |\
// | | H
// G | |
// | e f
// | \|\
// | D |
// \ / c
// b /
// |/
// A
// |
// root
//
// When walking from "J", we'll find indirect edges to "H", "G", and "D". This
// is our unfiltered set of edges, before removing transitive edges. In order to
// know that "D" is an ancestor of "H", we need to also walk from "H". We use
// the same search for finding edges from "H" as we used from "J". That results
// in looking ahead all the way to "A". We could reduce the amount of look-ahead
// by stopping at "c" since we're only interested in edges that could lead to
// "D", but that would require extra book-keeping to remember for later that the
// edges from "f" and "H" are only partially computed.
pub struct RevsetGraphIterator<'revset, 'repo> {
input_set_iter: RevsetIterator<'revset, 'repo>,
// Commits in the input set we had to take out of the iterator while walking external
// edges. Does not necessarily include the commit we're currently about to emit.
look_ahead: BTreeMap<IndexPosition, IndexEntry<'repo>>,
// The last consumed position. This is always the smallest key in the look_ahead map, but it's
// faster to keep a separate field for it.
min_position: IndexPosition,
// Edges for commits not in the input set.
// TODO: Remove unneeded entries here as we go (that's why it's an ordered map)?
edges: BTreeMap<IndexPosition, HashSet<RevsetGraphEdge>>,
skip_transitive_edges: bool,
}
impl<'revset, 'repo> RevsetGraphIterator<'revset, 'repo> {
pub fn new(iter: RevsetIterator<'revset, 'repo>) -> RevsetGraphIterator<'revset, 'repo> {
RevsetGraphIterator {
input_set_iter: iter,
look_ahead: Default::default(),
min_position: IndexPosition::MAX,
edges: Default::default(),
skip_transitive_edges: true,
}
}
pub fn set_skip_transitive_edges(mut self, skip_transitive_edges: bool) -> Self {
self.skip_transitive_edges = skip_transitive_edges;
self
}
pub fn reversed(self) -> ReverseRevsetGraphIterator<'repo> {
ReverseRevsetGraphIterator::new(self)
}
fn next_index_entry(&mut self) -> Option<IndexEntry<'repo>> {
if let Some(index_entry) = self.look_ahead.pop_last_value() {
return Some(index_entry);
}
self.input_set_iter.next()
}
fn edges_from_internal_commit(
&mut self,
index_entry: &IndexEntry<'repo>,
) -> HashSet<RevsetGraphEdge> {
if let Some(edges) = self.edges.get(&index_entry.position()) {
return edges.clone();
}
let mut edges = HashSet::new();
for parent in index_entry.parents() {
let parent_position = parent.position();
self.consume_to(parent_position);
if self.look_ahead.contains_key(&parent_position) {
edges.insert(RevsetGraphEdge::direct(parent_position));
} else {
let parent_edges = self.edges_from_external_commit(parent);
if parent_edges
.iter()
.all(|edge| edge.edge_type == RevsetGraphEdgeType::Missing)
{
edges.insert(RevsetGraphEdge::missing(parent_position));
} else {
edges.extend(parent_edges);
}
}
}
self.edges.insert(index_entry.position(), edges.clone());
edges
}
fn edges_from_external_commit(
&mut self,
index_entry: IndexEntry<'repo>,
) -> HashSet<RevsetGraphEdge> {
let position = index_entry.position();
let mut stack = vec![index_entry];
while let Some(entry) = stack.last() {
let position = entry.position();
let mut edges = HashSet::new();
let mut parents_complete = true;
for parent in entry.parents() {
let parent_position = parent.position();
self.consume_to(parent_position);
if self.look_ahead.contains_key(&parent_position) {
// We have found a path back into the input set
edges.insert(RevsetGraphEdge::indirect(parent_position));
} else if let Some(parent_edges) = self.edges.get(&parent_position) {
if parent_edges
.iter()
.all(|edge| edge.edge_type == RevsetGraphEdgeType::Missing)
{
edges.insert(RevsetGraphEdge::missing(parent_position));
} else {
edges.extend(parent_edges.iter().cloned());
}
} else if parent_position < self.min_position {
// The parent is not in the input set
edges.insert(RevsetGraphEdge::missing(parent_position));
} else {
// The parent is not in the input set but it's somewhere in the range
// where we have commits in the input set, so continue searching.
stack.push(parent);
parents_complete = false;
}
}
if parents_complete {
stack.pop().unwrap();
self.edges.insert(position, edges);
}
}
self.edges.get(&position).unwrap().clone()
}
fn remove_transitive_edges(
&mut self,
edges: HashSet<RevsetGraphEdge>,
) -> HashSet<RevsetGraphEdge> {
if !edges
.iter()
.any(|edge| edge.edge_type == RevsetGraphEdgeType::Indirect)
{
return edges;
}
let mut min_generation = u32::MAX;
let mut initial_targets = HashSet::new();
let mut work = vec![];
// To start with, add the edges one step after the input edges.
for edge in &edges {
initial_targets.insert(edge.target);
if edge.edge_type != RevsetGraphEdgeType::Missing {
let entry = self.look_ahead.get(&edge.target).unwrap().clone();
min_generation = min(min_generation, entry.generation_number());
work.extend(self.edges_from_internal_commit(&entry));
}
}
// Find commits reachable transitively and add them to the `unwanted` set.
let mut unwanted = HashSet::new();
while let Some(edge) = work.pop() {
if edge.edge_type == RevsetGraphEdgeType::Missing || edge.target < self.min_position {
continue;
}
if !unwanted.insert(edge.target) {
// Already visited
continue;
}
if initial_targets.contains(&edge.target) {
// Already visited
continue;
}
let entry = self.look_ahead.get(&edge.target).unwrap().clone();
if entry.generation_number() < min_generation {
continue;
}
work.extend(self.edges_from_internal_commit(&entry));
}
edges
.into_iter()
.filter(|edge| !unwanted.contains(&edge.target))
.collect()
}
fn consume_to(&mut self, pos: IndexPosition) {
while pos < self.min_position {
if let Some(next_entry) = self.input_set_iter.next() {
let next_position = next_entry.position();
self.look_ahead.insert(next_position, next_entry);
self.min_position = next_position;
} else {
break;
}
}
}
}
impl<'revset, 'repo> Iterator for RevsetGraphIterator<'revset, 'repo> {
type Item = (IndexEntry<'repo>, Vec<RevsetGraphEdge>);
fn next(&mut self) -> Option<Self::Item> {
let index_entry = self.next_index_entry()?;
let mut edges = self.edges_from_internal_commit(&index_entry);
if self.skip_transitive_edges {
edges = self.remove_transitive_edges(edges);
}
let mut edges: Vec<_> = edges.into_iter().collect();
edges.sort_by(|edge1, edge2| edge2.target.cmp(&edge1.target));
Some((index_entry, edges))
}
}
pub struct ReverseRevsetGraphIterator<'repo> {
items: Vec<(IndexEntry<'repo>, Vec<RevsetGraphEdge>)>,
}
impl<'repo> ReverseRevsetGraphIterator<'repo> {
fn new<'revset>(input: RevsetGraphIterator<'revset, 'repo>) -> Self {
let mut entries = vec![];
let mut reverse_edges: HashMap<IndexPosition, Vec<RevsetGraphEdge>> = HashMap::new();
for (entry, edges) in input {
for RevsetGraphEdge { target, edge_type } in edges {
reverse_edges
.entry(target)
.or_default()
.push(RevsetGraphEdge {
target: entry.position(),
edge_type,
})
}
entries.push(entry);
}
let mut items = vec![];
for entry in entries.into_iter() {
let edges = reverse_edges
.get(&entry.position())
.cloned()
.unwrap_or_default();
items.push((entry, edges));
}
Self { items }
}
}
impl<'repo> Iterator for ReverseRevsetGraphIterator<'repo> {
type Item = (IndexEntry<'repo>, Vec<RevsetGraphEdge>);
fn next(&mut self) -> Option<Self::Item> {
self.items.pop()
}
}