jj/lib/src/content_hash.rs
Samuel Tardieu bdaebf33c4 style: do not dereference self to perform pattern-matching
Dereferencing `self` as `*self` in order to perform patten-matching
using `ref` is unnecessary and will be done automatically by the
compiler (match ergonomics, introduced in Rust 1.26).
2023-01-14 19:28:24 +01:00

233 lines
6.3 KiB
Rust

use blake2::Blake2b512;
use itertools::Itertools as _;
/// Portable, stable hashing suitable for identifying values
///
/// Variable-length sequences should hash a 64-bit little-endian representation
/// of their length, then their elements in order. Unordered containers should
/// order their elements according to their `Ord` implementation. Enums should
/// hash a 32-bit little-endian encoding of the ordinal number of the enum
/// variant, then the variant's fields in lexical order.
pub trait ContentHash {
fn hash(&self, state: &mut impl digest::Update);
}
pub fn blake2b_hash(x: &(impl ContentHash + ?Sized)) -> digest::Output<Blake2b512> {
use digest::Digest;
let mut hasher = Blake2b512::default();
x.hash(&mut hasher);
hasher.finalize()
}
impl ContentHash for () {
fn hash(&self, _: &mut impl digest::Update) {}
}
impl ContentHash for bool {
fn hash(&self, state: &mut impl digest::Update) {
u8::from(*self).hash(state);
}
}
impl ContentHash for u8 {
fn hash(&self, state: &mut impl digest::Update) {
state.update(&[*self]);
}
}
impl ContentHash for i32 {
fn hash(&self, state: &mut impl digest::Update) {
state.update(&self.to_le_bytes());
}
}
impl ContentHash for i64 {
fn hash(&self, state: &mut impl digest::Update) {
state.update(&self.to_le_bytes());
}
}
// TODO: Specialize for [u8] once specialization exists
impl<T: ContentHash> ContentHash for [T] {
fn hash(&self, state: &mut impl digest::Update) {
state.update(&(self.len() as u64).to_le_bytes());
for x in self {
x.hash(state);
}
}
}
impl<T: ContentHash> ContentHash for Vec<T> {
fn hash(&self, state: &mut impl digest::Update) {
self.as_slice().hash(state)
}
}
impl ContentHash for String {
fn hash(&self, state: &mut impl digest::Update) {
self.as_bytes().hash(state);
}
}
impl<T: ContentHash> ContentHash for Option<T> {
fn hash(&self, state: &mut impl digest::Update) {
match self {
None => state.update(&[0]),
Some(x) => {
state.update(&[1]);
x.hash(state)
}
}
}
}
impl<K, V> ContentHash for std::collections::HashMap<K, V>
where
K: ContentHash + Ord,
V: ContentHash,
{
fn hash(&self, state: &mut impl digest::Update) {
state.update(&(self.len() as u64).to_le_bytes());
let mut kv = self.iter().collect_vec();
kv.sort_unstable_by_key(|&(k, _)| k);
for (k, v) in kv {
k.hash(state);
v.hash(state);
}
}
}
impl<K> ContentHash for std::collections::HashSet<K>
where
K: ContentHash + Ord,
{
fn hash(&self, state: &mut impl digest::Update) {
state.update(&(self.len() as u64).to_le_bytes());
for k in self.iter().sorted() {
k.hash(state);
}
}
}
impl<K, V> ContentHash for std::collections::BTreeMap<K, V>
where
K: ContentHash,
V: ContentHash,
{
fn hash(&self, state: &mut impl digest::Update) {
state.update(&(self.len() as u64).to_le_bytes());
for (k, v) in self.iter() {
k.hash(state);
v.hash(state);
}
}
}
macro_rules! content_hash {
($(#[$meta:meta])* $vis:vis struct $name:ident {
$($(#[$field_meta:meta])* $field_vis:vis $field:ident : $ty:ty),* $(,)?
}) => {
$(#[$meta])*
$vis struct $name {
$($(#[$field_meta])* $field_vis $field : $ty),*
}
impl crate::content_hash::ContentHash for $name {
fn hash(&self, state: &mut impl digest::Update) {
$(<$ty as crate::content_hash::ContentHash>::hash(&self.$field, state);)*
}
}
};
($(#[$meta:meta])* $vis:vis struct $name:ident($field_vis:vis $ty:ty);) => {
$(#[$meta])*
$vis struct $name($field_vis $ty);
impl crate::content_hash::ContentHash for $name {
fn hash(&self, state: &mut impl digest::Update) {
<$ty as crate::content_hash::ContentHash>::hash(&self.0, state);
}
}
};
}
#[cfg(test)]
mod tests {
use std::collections::{BTreeMap, HashMap};
use blake2::Blake2b512;
use super::*;
#[test]
fn test_string_sanity() {
let a = "a".to_string();
let b = "b".to_string();
assert_eq!(hash(&a), hash(&a.clone()));
assert_ne!(hash(&a), hash(&b));
assert_ne!(hash(&"a".to_string()), hash(&"a\0".to_string()));
}
#[test]
fn test_hash_map_key_value_distinction() {
let a = [("ab".to_string(), "cd".to_string())]
.into_iter()
.collect::<HashMap<_, _>>();
let b = [("a".to_string(), "bcd".to_string())]
.into_iter()
.collect::<HashMap<_, _>>();
assert_ne!(hash(&a), hash(&b));
}
#[test]
fn test_btree_map_key_value_distinction() {
let a = [("ab".to_string(), "cd".to_string())]
.into_iter()
.collect::<BTreeMap<_, _>>();
let b = [("a".to_string(), "bcd".to_string())]
.into_iter()
.collect::<BTreeMap<_, _>>();
assert_ne!(hash(&a), hash(&b));
}
#[test]
fn test_struct_sanity() {
content_hash! {
struct Foo { x: i32 }
}
assert_ne!(hash(&Foo { x: 42 }), hash(&Foo { x: 12 }));
}
#[test]
fn test_option_sanity() {
assert_ne!(hash(&Some(42)), hash(&42));
assert_ne!(hash(&None::<i32>), hash(&42i32));
}
#[test]
fn test_slice_sanity() {
assert_ne!(hash(&[42i32][..]), hash(&[12i32][..]));
assert_ne!(hash(&([] as [i32; 0])[..]), hash(&[42i32][..]));
assert_ne!(hash(&([] as [i32; 0])[..]), hash(&()));
assert_ne!(hash(&42i32), hash(&[42i32][..]));
}
#[test]
fn test_consistent_hashing() {
content_hash! {
struct Foo { x: Vec<Option<i32>>, y: i64 }
}
insta::assert_snapshot!(
hex::encode(hash(&Foo {
x: vec![None, Some(42)],
y: 17
})),
@"14e42ea3d680bc815d0cea8ac20d3e872120014fb7bba8d82c3ffa7a8e6d63c41ef9631c60b73b150e3dd72efe50e8b0248321fe2b7eea09d879f3757b879372"
);
}
fn hash(x: &(impl ContentHash + ?Sized)) -> digest::Output<Blake2b512> {
blake2b_hash(x)
}
}