salsa/salsa-2022-tests/tests/parallel/parallel_cycle_mid_recover.rs

111 lines
2.8 KiB
Rust
Raw Normal View History

2022-08-09 10:06:39 +00:00
//! Test for cycle recover spread across two threads.
//! See `../cycles.rs` for a complete listing of cycle tests,
//! both intra and cross thread.
2022-08-09 10:33:46 +00:00
use crate::setup::Database;
2022-08-09 10:06:39 +00:00
use crate::setup::Knobs;
use salsa::ParallelDatabase;
2022-08-09 10:33:46 +00:00
pub(crate) trait Db: salsa::DbWithJar<Jar> + Knobs {}
2022-08-09 10:06:39 +00:00
2022-08-09 10:33:46 +00:00
impl<T: salsa::DbWithJar<Jar> + Knobs> Db for T {}
2022-08-09 10:06:39 +00:00
2022-08-09 10:33:46 +00:00
#[salsa::jar(db = Db)]
pub(crate) struct Jar(MyInput, a1, a2, b1, b2, b3);
2022-08-09 10:06:39 +00:00
#[salsa::input(jar = Jar)]
pub(crate) struct MyInput {
2022-08-09 10:33:46 +00:00
field: i32,
2022-08-09 10:06:39 +00:00
}
#[salsa::tracked(jar = Jar)]
pub(crate) fn a1(db: &dyn Db, input: MyInput) -> i32 {
// tell thread b we have started
db.signal(1);
// wait for thread b to block on a1
db.wait_for(2);
a2(db, input)
}
#[salsa::tracked(jar = Jar)]
pub(crate) fn a2(db: &dyn Db, input: MyInput) -> i32 {
// create the cycle
b1(db, input)
}
#[salsa::tracked(jar = Jar, recovery_fn=recover_b1)]
pub(crate) fn b1(db: &dyn Db, input: MyInput) -> i32 {
// wait for thread a to have started
db.wait_for(1);
b2(db, input)
}
fn recover_b1(db: &dyn Db, _cycle: &salsa::Cycle, key: MyInput) -> i32 {
dbg!("recover_b1");
key.field(db) * 20 + 2
}
#[salsa::tracked(jar = Jar)]
pub(crate) fn b2(db: &dyn Db, input: MyInput) -> i32 {
// will encounter a cycle but recover
b3(db, input);
b1(db, input); // hasn't recovered yet
0
}
#[salsa::tracked(jar = Jar, recovery_fn=recover_b3)]
pub(crate) fn b3(db: &dyn Db, input: MyInput) -> i32 {
// will block on thread a, signaling stage 2
a1(db, input)
}
fn recover_b3(db: &dyn Db, _cycle: &salsa::Cycle, key: MyInput) -> i32 {
dbg!("recover_b3");
key.field(db) * 200 + 2
}
2022-08-09 10:33:46 +00:00
// Recover cycle test:
//
// The pattern is as follows.
//
// Thread A Thread B
// -------- --------
// a1 b1
// | wait for stage 1 (blocks)
// signal stage 1 |
// wait for stage 2 (blocks) (unblocked)
// | |
// | b2
// | b3
// | a1 (blocks -> stage 2)
// (unblocked) |
// a2 (cycle detected) |
// b3 recovers
// b2 resumes
// b1 recovers
#[test]
fn execute() {
let db = Database::default();
2022-08-09 10:33:46 +00:00
db.knobs().signal_on_will_block.set(3);
let input = MyInput::new(&db, 1);
2022-08-09 10:33:46 +00:00
let thread_a = std::thread::spawn({
let db = db.snapshot();
move || a1(&*db, input)
});
let thread_b = std::thread::spawn({
let db = db.snapshot();
move || b1(&*db, input)
});
// We expect that the recovery function yields
// `1 * 20 + 2`, which is returned (and forwarded)
// to b1, and from there to a2 and a1.
assert_eq!(thread_a.join().unwrap(), 22);
assert_eq!(thread_b.join().unwrap(), 22);
}