salsa/tests/parallel/cycles.rs

170 lines
4.4 KiB
Rust
Raw Normal View History

//! Tests for cycles that occur across threads. See the
//! `../cycles.rs` for a complete listing of cycle tests,
//! both intra and cross thread.
use crate::setup::{Knobs, ParDatabase, ParDatabaseImpl};
use salsa::{Cancelled, ParallelDatabase};
use test_env_log::test;
// Recover cycle test:
//
// The pattern is as follows.
//
// Thread A Thread B
// -------- --------
// a1 b1
// | wait for stage 1 (blocks)
// signal stage 1 |
// wait for stage 2 (blocks) (unblocked)
// | signal stage 2
// (unblocked) wait for stage 3 (blocks)
// a2 |
// b1 (blocks -> stage 3) |
// | (unblocked)
// | b2
// | a1 (cycle detected, recovers)
// | b2 completes, recovers
// | b1 completes, recovers
// a2 sees cycle, recovers
// a1 completes, recovers
pub(crate) fn recover_from_cycle_a1(
_db: &dyn ParDatabase,
_cycle: &salsa::Cycle,
key: &i32,
) -> i32 {
log::debug!("recover_from_cycle_a1");
key * 10 + 1
}
pub(crate) fn recover_from_cycle_a2(
_db: &dyn ParDatabase,
_cycle: &salsa::Cycle,
key: &i32,
) -> i32 {
log::debug!("recover_from_cycle_a2");
key * 10 + 2
}
pub(crate) fn recover_from_cycle_b1(
_db: &dyn ParDatabase,
_cycle: &salsa::Cycle,
key: &i32,
) -> i32 {
log::debug!("recover_from_cycle_b1");
key * 20 + 1
}
pub(crate) fn recover_from_cycle_b2(
_db: &dyn ParDatabase,
_cycle: &salsa::Cycle,
key: &i32,
) -> i32 {
log::debug!("recover_from_cycle_b2");
key * 20 + 2
}
pub(crate) fn recover_cycle_a1(db: &dyn ParDatabase, key: i32) -> i32 {
// Wait to create the cycle until both threads have entered
db.signal(1);
db.wait_for(2);
db.recover_cycle_a2(key)
}
pub(crate) fn recover_cycle_a2(db: &dyn ParDatabase, key: i32) -> i32 {
db.recover_cycle_b1(key)
}
pub(crate) fn recover_cycle_b1(db: &dyn ParDatabase, key: i32) -> i32 {
// Wait to create the cycle until both threads have entered
db.wait_for(1);
db.signal(2);
// Wait for thread A to block on this thread
db.wait_for(3);
db.recover_cycle_b2(key)
}
pub(crate) fn recover_cycle_b2(db: &dyn ParDatabase, key: i32) -> i32 {
db.recover_cycle_a1(key)
}
pub(crate) fn panic_cycle_a(db: &dyn ParDatabase, key: i32) -> i32 {
// Wait to create the cycle until both threads have entered
db.signal(1);
db.wait_for(2);
db.panic_cycle_b(key)
}
pub(crate) fn panic_cycle_b(db: &dyn ParDatabase, key: i32) -> i32 {
// Wait to create the cycle until both threads have entered
db.wait_for(1);
db.signal(2);
// Wait for thread A to block on this thread
db.wait_for(3);
// Now try to execute A
db.panic_cycle_a(key)
}
#[test]
fn recover_parallel_cycle() {
let db = ParDatabaseImpl::default();
db.knobs().signal_on_will_block.set(3);
let thread_a = std::thread::spawn({
let db = db.snapshot();
move || db.recover_cycle_a1(1)
});
let thread_b = std::thread::spawn({
let db = db.snapshot();
move || db.recover_cycle_b1(1)
});
assert_eq!(thread_a.join().unwrap(), 11);
assert_eq!(thread_b.join().unwrap(), 21);
}
#[test]
fn panic_parallel_cycle() {
2021-10-27 11:30:23 +00:00
let db = ParDatabaseImpl::default();
db.knobs().signal_on_will_block.set(3);
let thread_a = std::thread::spawn({
let db = db.snapshot();
move || db.panic_cycle_a(-1)
});
let thread_b = std::thread::spawn({
let db = db.snapshot();
move || db.panic_cycle_b(-1)
});
// We expect B to panic because it detects a cycle (it is the one that calls A, ultimately).
// Right now, it panics with a string.
let err_b = thread_b.join().unwrap_err();
if let Some(c) = err_b.downcast_ref::<salsa::Cycle>() {
insta::assert_debug_snapshot!(c.unexpected_participants(&db), @r###"
[
"panic_cycle_a(-1)",
"panic_cycle_b(-1)",
]
"###);
} else {
panic!("b failed in an unexpected way: {:?}", err_b);
}
// We expect A to propagate a panic, which causes us to use the sentinel
// type `Canceled`.
assert!(thread_a
.join()
.unwrap_err()
.downcast_ref::<Cancelled>()
.is_some());
}