s/next_revision/synthetic_write/

Also write some docs explaining its side-effects.
This commit is contained in:
Niko Matsakis 2019-06-25 18:02:56 -04:00
parent a0a6bac5af
commit 9d474363fc
6 changed files with 85 additions and 27 deletions

View file

@ -116,18 +116,37 @@ where
} }
} }
/// Indicates that some input to the system has changed and hence /// A "synthetic write" causes the system to act *as though* some
/// that memoized values **may** be invalidated. This cannot be /// input of durability `durability` has changed. This is mostly
/// invoked while query computation is in progress. /// useful for profiling scenarios, but it also has interactions
/// with garbage collection. In general, a synthetic write to
/// durability level D will cause the system to fully trace all
/// queries of durability level D and below. When running a GC, then:
/// ///
/// As a user of the system, you would not normally invoke this /// - Synthetic writes will cause more derived values to be
/// method directly. Instead, you would use "input" queries and /// *retained*. This is because derived values are only
/// invoke their `set` method. But it can be useful if you have a /// retained if they are traced, and a synthetic write can cause
/// "volatile" input that you must poll from time to time; in that /// more things to be traced.
/// case, you can wrap the input with a "no-storage" query and /// - Synthetic writes can cause more interned values to be
/// invoke this method from time to time. /// *collected*. This is because interned values can only be
pub fn next_revision(&self) { /// collected if they were not yet traced in the current
self.with_incremented_revision(|_| ()); /// revision. Therefore, if you issue a synthetic write, execute
/// some query Q, and then start collecting interned values, you
/// will be able to recycle interned values not used in Q.
///
/// In general, then, one can do a "full GC" that retains only
/// those things that are used by some query Q by (a) doing a
/// synthetic write at `Durability::HIGH`, (b) executing the query
/// Q and then (c) doing a sweep.
///
/// **WARNING:** Just like an ordinary write, this method triggers
/// cancellation. If you invoke it while a snapshot exists, it
/// will block until that snapshot is dropped -- if that snapshot
/// is owned by the current thread, this could trigger deadlock.
pub fn synthetic_write(&self, durability: Durability) {
self.with_incremented_revision(|guard| {
guard.mark_durability_as_changed(durability);
});
} }
/// Default implementation for `Database::sweep_all`. /// Default implementation for `Database::sweep_all`.

View file

@ -1,17 +1,17 @@
use crate::db; use crate::db;
use crate::group::*; use crate::group::*;
use salsa::debug::DebugQueryTable; use salsa::debug::DebugQueryTable;
use salsa::{Database, SweepStrategy}; use salsa::{Database, Durability, SweepStrategy};
#[test] #[test]
fn compute_one() { fn compute_one_write_low() {
let mut db = db::DatabaseImpl::default(); let mut db = db::DatabaseImpl::default();
// Will compute fibonacci(5) // Will compute fibonacci(5)
db.set_use_triangular(5, false); db.set_use_triangular(5, false);
db.compute(5); db.compute(5);
db.salsa_runtime().next_revision(); db.salsa_runtime().synthetic_write(Durability::LOW);
assert_keys! { assert_keys! {
db, db,
@ -38,6 +38,44 @@ fn compute_one() {
} }
} }
#[test]
fn compute_one_write_high() {
let mut db = db::DatabaseImpl::default();
// Will compute fibonacci(5)
db.set_use_triangular(5, false);
db.compute(5);
// Doing a synthetic write with durability *high* means that we
// will revalidate the things `compute(5)` uses, and hence they
// are not discarded.
db.salsa_runtime().synthetic_write(Durability::HIGH);
assert_keys! {
db,
TriangularQuery => (),
FibonacciQuery => (0, 1, 2, 3, 4, 5),
ComputeQuery => (5),
UseTriangularQuery => (5),
MinQuery => (),
MaxQuery => (),
}
// Memoized, but will compute fibonacci(5) again
db.compute(5);
db.sweep_all(SweepStrategy::discard_outdated());
assert_keys! {
db,
TriangularQuery => (),
FibonacciQuery => (0, 1, 2, 3, 4, 5),
ComputeQuery => (5),
UseTriangularQuery => (5),
MinQuery => (),
MaxQuery => (),
}
}
#[test] #[test]
fn compute_switch() { fn compute_switch() {
let mut db = db::DatabaseImpl::default(); let mut db = db::DatabaseImpl::default();
@ -78,7 +116,7 @@ fn compute_switch() {
} }
// Now run `compute` *again* in next revision. // Now run `compute` *again* in next revision.
db.salsa_runtime().next_revision(); db.salsa_runtime().synthetic_write(Durability::LOW);
assert_eq!(db.compute(5), 15); assert_eq!(db.compute(5), 15);
db.sweep_all(SweepStrategy::discard_outdated()); db.sweep_all(SweepStrategy::discard_outdated());
@ -107,7 +145,7 @@ fn compute_all() {
db.set_max(6); db.set_max(6);
db.compute_all(); db.compute_all();
db.salsa_runtime().next_revision(); db.salsa_runtime().synthetic_write(Durability::LOW);
db.compute_all(); db.compute_all();
db.sweep_all(SweepStrategy::discard_outdated()); db.sweep_all(SweepStrategy::discard_outdated());

View file

@ -1,7 +1,7 @@
use crate::db; use crate::db;
use crate::group::{FibonacciQuery, GcDatabase}; use crate::group::{FibonacciQuery, GcDatabase};
use salsa::debug::DebugQueryTable; use salsa::debug::DebugQueryTable;
use salsa::{Database, SweepStrategy}; use salsa::{Database, Durability, SweepStrategy};
#[test] #[test]
fn sweep_default() { fn sweep_default() {
@ -12,7 +12,7 @@ fn sweep_default() {
let k: Vec<_> = db.query(FibonacciQuery).entries(); let k: Vec<_> = db.query(FibonacciQuery).entries();
assert_eq!(k.len(), 6); assert_eq!(k.len(), 6);
db.salsa_runtime().next_revision(); db.salsa_runtime().synthetic_write(Durability::LOW);
db.fibonacci(5); db.fibonacci(5);
db.fibonacci(3); db.fibonacci(3);

View file

@ -1,7 +1,7 @@
use crate::db; use crate::db;
use crate::group::{FibonacciQuery, GcDatabase}; use crate::group::{FibonacciQuery, GcDatabase};
use salsa::debug::DebugQueryTable; use salsa::debug::DebugQueryTable;
use salsa::{Database, SweepStrategy}; use salsa::{Database, Durability, SweepStrategy};
// For constant values (like `fibonacci`), we only keep the values // For constant values (like `fibonacci`), we only keep the values
// that were used in the latest revision, not the sub-values that // that were used in the latest revision, not the sub-values that
@ -31,7 +31,7 @@ fn two_rev_nothing() {
let k: Vec<_> = db.query(FibonacciQuery).entries(); let k: Vec<_> = db.query(FibonacciQuery).entries();
assert_eq!(k.len(), 6); assert_eq!(k.len(), 6);
db.salsa_runtime().next_revision(); db.salsa_runtime().synthetic_write(Durability::LOW);
// Nothing was used in this revision, so // Nothing was used in this revision, so
// everything gets collected. // everything gets collected.
@ -50,7 +50,7 @@ fn two_rev_one_use() {
let k: Vec<_> = db.query(FibonacciQuery).entries(); let k: Vec<_> = db.query(FibonacciQuery).entries();
assert_eq!(k.len(), 6); assert_eq!(k.len(), 6);
db.salsa_runtime().next_revision(); db.salsa_runtime().synthetic_write(Durability::LOW);
db.fibonacci(5); db.fibonacci(5);
@ -73,7 +73,7 @@ fn two_rev_two_uses() {
let k: Vec<_> = db.query(FibonacciQuery).entries(); let k: Vec<_> = db.query(FibonacciQuery).entries();
assert_eq!(k.len(), 6); assert_eq!(k.len(), 6);
db.salsa_runtime().next_revision(); db.salsa_runtime().synthetic_write(Durability::LOW);
db.fibonacci(5); db.fibonacci(5);
db.fibonacci(3); db.fibonacci(3);

View file

@ -1,5 +1,5 @@
use crate::implementation::{TestContext, TestContextImpl}; use crate::implementation::{TestContext, TestContextImpl};
use salsa::Database; use salsa::{Database, Durability};
#[salsa::query_group(MemoizedVolatile)] #[salsa::query_group(MemoizedVolatile)]
pub(crate) trait MemoizedVolatileContext: TestContext { pub(crate) trait MemoizedVolatileContext: TestContext {
@ -58,7 +58,7 @@ fn revalidate() {
// Second generation: volatile will change (to 1) but memoized1 // Second generation: volatile will change (to 1) but memoized1
// will not (still 0, as 1/2 = 0) // will not (still 0, as 1/2 = 0)
query.salsa_runtime().next_revision(); query.salsa_runtime().synthetic_write(Durability::LOW);
query.memoized2(); query.memoized2();
query.assert_log(&["Memoized1 invoked", "Volatile invoked"]); query.assert_log(&["Memoized1 invoked", "Volatile invoked"]);
query.memoized2(); query.memoized2();
@ -67,7 +67,7 @@ fn revalidate() {
// Third generation: volatile will change (to 2) and memoized1 // Third generation: volatile will change (to 2) and memoized1
// will too (to 1). Therefore, after validating that Memoized1 // will too (to 1). Therefore, after validating that Memoized1
// changed, we now invoke Memoized2. // changed, we now invoke Memoized2.
query.salsa_runtime().next_revision(); query.salsa_runtime().synthetic_write(Durability::LOW);
query.memoized2(); query.memoized2();
query.assert_log(&["Memoized1 invoked", "Volatile invoked", "Memoized2 invoked"]); query.assert_log(&["Memoized1 invoked", "Volatile invoked", "Memoized2 invoked"]);

View file

@ -3,6 +3,7 @@
use crate::implementation::DatabaseImpl; use crate::implementation::DatabaseImpl;
use crate::queries::Database; use crate::queries::Database;
use salsa::Database as _Database; use salsa::Database as _Database;
use salsa::Durability;
#[test] #[test]
fn memoized_twice() { fn memoized_twice() {
@ -19,7 +20,7 @@ fn volatile_twice() {
let v2 = db.volatile(); // volatiles are cached, so 2nd read returns the same let v2 = db.volatile(); // volatiles are cached, so 2nd read returns the same
assert_eq!(v1, v2); assert_eq!(v1, v2);
db.salsa_runtime().next_revision(); // clears volatile caches db.salsa_runtime().synthetic_write(Durability::LOW); // clears volatile caches
let v3 = db.volatile(); // will re-increment the counter let v3 = db.volatile(); // will re-increment the counter
let v4 = db.volatile(); // second call will be cached let v4 = db.volatile(); // second call will be cached
@ -39,7 +40,7 @@ fn intermingled() {
assert_eq!(v1, v3); assert_eq!(v1, v3);
assert_eq!(v2, v4); assert_eq!(v2, v4);
db.salsa_runtime().next_revision(); // clears volatile caches db.salsa_runtime().synthetic_write(Durability::LOW); // clears volatile caches
let v5 = db.memoized(); // re-executes volatile, caches new result let v5 = db.memoized(); // re-executes volatile, caches new result
let v6 = db.memoized(); // re-use cached result let v6 = db.memoized(); // re-use cached result