zed/crates/semantic_index/Cargo.toml

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

68 lines
1.8 KiB
TOML
Raw Normal View History

Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
[package]
name = "semantic_index"
description = "Process, chunk, and embed text as vectors for semantic search."
version = "0.1.0"
edition = "2021"
publish = false
license = "GPL-3.0-or-later"
[lints]
workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
[lib]
path = "src/semantic_index.rs"
[[example]]
name = "index"
path = "examples/index.rs"
crate-type = ["bin"]
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
[dependencies]
anyhow.workspace = true
arrayvec.workspace = true
blake3.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
client.workspace = true
clock.workspace = true
collections.workspace = true
feature_flags.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
fs.workspace = true
futures-batch.workspace = true
futures.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
gpui.workspace = true
heed.workspace = true
http_client.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
language.workspace = true
language_model.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
log.workspace = true
open_ai.workspace = true
parking_lot.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
project.workspace = true
serde.workspace = true
serde_json.workspace = true
settings.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
sha2.workspace = true
smol.workspace = true
theme.workspace = true
tree-sitter.workspace = true
ui. workspace = true
unindent.workspace = true
util. workspace = true
workspace.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
worktree.workspace = true
[dev-dependencies]
client = { workspace = true, features = ["test-support"] }
env_logger.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
fs = { workspace = true, features = ["test-support"] }
futures.workspace = true
gpui = { workspace = true, features = ["test-support"] }
http_client = { workspace = true, features = ["test-support"] }
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
language = { workspace = true, features = ["test-support"] }
languages.workspace = true
project = { workspace = true, features = ["test-support"] }
tempfile.workspace = true
reqwest_client.workspace = true
Semantic Index (#10329) This introduces semantic indexing in Zed based on chunking text from files in the developer's workspace and creating vector embeddings using an embedding model. As part of this, we've created an embeddings provider trait that allows us to work with OpenAI, a local Ollama model, or a Zed hosted embedding. The semantic index is built by breaking down text for known (programming) languages into manageable chunks that are smaller than the max token size. Each chunk is then fed to a language model to create a high dimensional vector which is then normalized to a unit vector to allow fast comparison with other vectors with a simple dot product. Alongside the vector, we store the path of the file and the range within the document where the vector was sourced from. Zed will soon grok contextual similarity across different text snippets, allowing for natural language search beyond keyword matching. This is being put together both for human-based search as well as providing results to Large Language Models to allow them to refine how they help developers. Remaining todo: * [x] Change `provider` to `model` within the zed hosted embeddings database (as its currently a combo of the provider and the model in one name) Release Notes: - N/A --------- Co-authored-by: Nathan Sobo <nathan@zed.dev> Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Conrad Irwin <conrad@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com> Co-authored-by: Antonio <antonio@zed.dev>
2024-04-12 17:40:59 +00:00
util = { workspace = true, features = ["test-support"] }
workspace = { workspace = true, features = ["test-support"] }
worktree = { workspace = true, features = ["test-support"] }