mirror of
https://github.com/zed-industries/zed.git
synced 2025-01-27 04:44:30 +00:00
corrected batching order and managed for open ai embedding errors
This commit is contained in:
parent
afccf608f4
commit
a86b6c42c7
3 changed files with 169 additions and 173 deletions
|
@ -32,6 +32,7 @@ async-trait.workspace = true
|
|||
bincode = "1.3.3"
|
||||
matrixmultiply = "0.3.7"
|
||||
tiktoken-rs = "0.5.0"
|
||||
rand.workspace = true
|
||||
|
||||
[dev-dependencies]
|
||||
gpui = { path = "../gpui", features = ["test-support"] }
|
||||
|
|
|
@ -2,15 +2,20 @@ use anyhow::{anyhow, Result};
|
|||
use async_trait::async_trait;
|
||||
use futures::AsyncReadExt;
|
||||
use gpui::serde_json;
|
||||
use isahc::http::StatusCode;
|
||||
use isahc::prelude::Configurable;
|
||||
use isahc::{AsyncBody, Response};
|
||||
use lazy_static::lazy_static;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::env;
|
||||
use std::sync::Arc;
|
||||
use std::{env, time::Instant};
|
||||
use std::time::Duration;
|
||||
use tiktoken_rs::{cl100k_base, CoreBPE};
|
||||
use util::http::{HttpClient, Request};
|
||||
|
||||
lazy_static! {
|
||||
static ref OPENAI_API_KEY: Option<String> = env::var("OPENAI_API_KEY").ok();
|
||||
static ref OPENAI_BPE_TOKENIZER: CoreBPE = cl100k_base().unwrap();
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
|
@ -60,69 +65,100 @@ impl EmbeddingProvider for DummyEmbeddings {
|
|||
}
|
||||
}
|
||||
|
||||
// impl OpenAIEmbeddings {
|
||||
// async fn truncate(span: &str) -> String {
|
||||
// let bpe = cl100k_base().unwrap();
|
||||
// let mut tokens = bpe.encode_with_special_tokens(span);
|
||||
// if tokens.len() > 8192 {
|
||||
// tokens.truncate(8192);
|
||||
// let result = bpe.decode(tokens);
|
||||
// if result.is_ok() {
|
||||
// return result.unwrap();
|
||||
// }
|
||||
// }
|
||||
impl OpenAIEmbeddings {
|
||||
async fn truncate(span: String) -> String {
|
||||
let mut tokens = OPENAI_BPE_TOKENIZER.encode_with_special_tokens(span.as_ref());
|
||||
if tokens.len() > 8190 {
|
||||
tokens.truncate(8190);
|
||||
let result = OPENAI_BPE_TOKENIZER.decode(tokens.clone());
|
||||
if result.is_ok() {
|
||||
let transformed = result.unwrap();
|
||||
// assert_ne!(transformed, span);
|
||||
return transformed;
|
||||
}
|
||||
}
|
||||
|
||||
// return span.to_string();
|
||||
// }
|
||||
// }
|
||||
|
||||
#[async_trait]
|
||||
impl EmbeddingProvider for OpenAIEmbeddings {
|
||||
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>> {
|
||||
// Truncate spans to 8192 if needed
|
||||
// let t0 = Instant::now();
|
||||
// let mut truncated_spans = vec![];
|
||||
// for span in spans {
|
||||
// truncated_spans.push(Self::truncate(span));
|
||||
// }
|
||||
// let spans = futures::future::join_all(truncated_spans).await;
|
||||
// log::info!("Truncated Spans in {:?}", t0.elapsed().as_secs());
|
||||
|
||||
let api_key = OPENAI_API_KEY
|
||||
.as_ref()
|
||||
.ok_or_else(|| anyhow!("no api key"))?;
|
||||
return span.to_string();
|
||||
}
|
||||
|
||||
async fn send_request(&self, api_key: &str, spans: Vec<&str>) -> Result<Response<AsyncBody>> {
|
||||
let request = Request::post("https://api.openai.com/v1/embeddings")
|
||||
.redirect_policy(isahc::config::RedirectPolicy::Follow)
|
||||
.header("Content-Type", "application/json")
|
||||
.header("Authorization", format!("Bearer {}", api_key))
|
||||
.body(
|
||||
serde_json::to_string(&OpenAIEmbeddingRequest {
|
||||
input: spans,
|
||||
input: spans.clone(),
|
||||
model: "text-embedding-ada-002",
|
||||
})
|
||||
.unwrap()
|
||||
.into(),
|
||||
)?;
|
||||
|
||||
let mut response = self.client.send(request).await?;
|
||||
if !response.status().is_success() {
|
||||
return Err(anyhow!("openai embedding failed {}", response.status()));
|
||||
}
|
||||
|
||||
let mut body = String::new();
|
||||
response.body_mut().read_to_string(&mut body).await?;
|
||||
let response: OpenAIEmbeddingResponse = serde_json::from_str(&body)?;
|
||||
|
||||
log::info!(
|
||||
"openai embedding completed. tokens: {:?}",
|
||||
response.usage.total_tokens
|
||||
);
|
||||
|
||||
Ok(response
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|embedding| embedding.embedding)
|
||||
.collect())
|
||||
Ok(self.client.send(request).await?)
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl EmbeddingProvider for OpenAIEmbeddings {
|
||||
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>> {
|
||||
const BACKOFF_SECONDS: [usize; 3] = [65, 180, 360];
|
||||
const MAX_RETRIES: usize = 3;
|
||||
|
||||
let api_key = OPENAI_API_KEY
|
||||
.as_ref()
|
||||
.ok_or_else(|| anyhow!("no api key"))?;
|
||||
|
||||
let mut request_number = 0;
|
||||
let mut response: Response<AsyncBody>;
|
||||
let mut spans: Vec<String> = spans.iter().map(|x| x.to_string()).collect();
|
||||
while request_number < MAX_RETRIES {
|
||||
response = self
|
||||
.send_request(api_key, spans.iter().map(|x| &**x).collect())
|
||||
.await?;
|
||||
request_number += 1;
|
||||
|
||||
if request_number + 1 == MAX_RETRIES && response.status() != StatusCode::OK {
|
||||
return Err(anyhow!(
|
||||
"openai max retries, error: {:?}",
|
||||
&response.status()
|
||||
));
|
||||
}
|
||||
|
||||
match response.status() {
|
||||
StatusCode::TOO_MANY_REQUESTS => {
|
||||
let delay = Duration::from_secs(BACKOFF_SECONDS[request_number - 1] as u64);
|
||||
std::thread::sleep(delay);
|
||||
}
|
||||
StatusCode::BAD_REQUEST => {
|
||||
log::info!("BAD REQUEST: {:?}", &response.status());
|
||||
// Don't worry about delaying bad request, as we can assume
|
||||
// we haven't been rate limited yet.
|
||||
for span in spans.iter_mut() {
|
||||
*span = Self::truncate(span.to_string()).await;
|
||||
}
|
||||
}
|
||||
StatusCode::OK => {
|
||||
let mut body = String::new();
|
||||
response.body_mut().read_to_string(&mut body).await?;
|
||||
let response: OpenAIEmbeddingResponse = serde_json::from_str(&body)?;
|
||||
|
||||
log::info!(
|
||||
"openai embedding completed. tokens: {:?}",
|
||||
response.usage.total_tokens
|
||||
);
|
||||
return Ok(response
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|embedding| embedding.embedding)
|
||||
.collect());
|
||||
}
|
||||
_ => {
|
||||
return Err(anyhow!("openai embedding failed {}", response.status()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Err(anyhow!("openai embedding failed"))
|
||||
}
|
||||
}
|
||||
|
|
|
@ -74,7 +74,6 @@ pub fn init(
|
|||
cx.subscribe_global::<WorkspaceCreated, _>({
|
||||
let vector_store = vector_store.clone();
|
||||
move |event, cx| {
|
||||
let t0 = Instant::now();
|
||||
let workspace = &event.0;
|
||||
if let Some(workspace) = workspace.upgrade(cx) {
|
||||
let project = workspace.read(cx).project().clone();
|
||||
|
@ -126,9 +125,7 @@ pub struct VectorStore {
|
|||
language_registry: Arc<LanguageRegistry>,
|
||||
db_update_tx: channel::Sender<DbWrite>,
|
||||
// embed_batch_tx: channel::Sender<Vec<(i64, IndexedFile, Vec<String>)>>,
|
||||
batch_files_tx: channel::Sender<(i64, IndexedFile, Vec<String>)>,
|
||||
parsing_files_tx: channel::Sender<(i64, PathBuf, Arc<Language>, SystemTime)>,
|
||||
parsing_files_rx: channel::Receiver<(i64, PathBuf, Arc<Language>, SystemTime)>,
|
||||
_db_update_task: Task<()>,
|
||||
_embed_batch_task: Vec<Task<()>>,
|
||||
_batch_files_task: Task<()>,
|
||||
|
@ -220,14 +217,13 @@ impl VectorStore {
|
|||
let (embed_batch_tx, embed_batch_rx) =
|
||||
channel::unbounded::<Vec<(i64, IndexedFile, Vec<String>)>>();
|
||||
let mut _embed_batch_task = Vec::new();
|
||||
for _ in 0..cx.background().num_cpus() {
|
||||
for _ in 0..1 {
|
||||
//cx.background().num_cpus() {
|
||||
let db_update_tx = db_update_tx.clone();
|
||||
let embed_batch_rx = embed_batch_rx.clone();
|
||||
let embedding_provider = embedding_provider.clone();
|
||||
_embed_batch_task.push(cx.background().spawn(async move {
|
||||
while let Ok(embeddings_queue) = embed_batch_rx.recv().await {
|
||||
log::info!("Embedding Batch! ");
|
||||
|
||||
// Construct Batch
|
||||
let mut embeddings_queue = embeddings_queue.clone();
|
||||
let mut document_spans = vec![];
|
||||
|
@ -235,20 +231,20 @@ impl VectorStore {
|
|||
document_spans.extend(document_span);
|
||||
}
|
||||
|
||||
if let Some(mut embeddings) = embedding_provider
|
||||
if let Ok(embeddings) = embedding_provider
|
||||
.embed_batch(document_spans.iter().map(|x| &**x).collect())
|
||||
.await
|
||||
.log_err()
|
||||
{
|
||||
let mut i = 0;
|
||||
let mut j = 0;
|
||||
while let Some(embedding) = embeddings.pop() {
|
||||
|
||||
for embedding in embeddings.iter() {
|
||||
while embeddings_queue[i].1.documents.len() == j {
|
||||
i += 1;
|
||||
j = 0;
|
||||
}
|
||||
|
||||
embeddings_queue[i].1.documents[j].embedding = embedding;
|
||||
embeddings_queue[i].1.documents[j].embedding = embedding.to_owned();
|
||||
j += 1;
|
||||
}
|
||||
|
||||
|
@ -283,7 +279,6 @@ impl VectorStore {
|
|||
while let Ok((worktree_id, indexed_file, document_spans)) =
|
||||
batch_files_rx.recv().await
|
||||
{
|
||||
log::info!("Batching File: {:?}", &indexed_file.path);
|
||||
queue_len += &document_spans.len();
|
||||
embeddings_queue.push((worktree_id, indexed_file, document_spans));
|
||||
if queue_len >= EMBEDDINGS_BATCH_SIZE {
|
||||
|
@ -338,10 +333,7 @@ impl VectorStore {
|
|||
embedding_provider,
|
||||
language_registry,
|
||||
db_update_tx,
|
||||
// embed_batch_tx,
|
||||
batch_files_tx,
|
||||
parsing_files_tx,
|
||||
parsing_files_rx,
|
||||
_db_update_task,
|
||||
_embed_batch_task,
|
||||
_batch_files_task,
|
||||
|
@ -449,8 +441,6 @@ impl VectorStore {
|
|||
let database_url = self.database_url.clone();
|
||||
let db_update_tx = self.db_update_tx.clone();
|
||||
let parsing_files_tx = self.parsing_files_tx.clone();
|
||||
let parsing_files_rx = self.parsing_files_rx.clone();
|
||||
let batch_files_tx = self.batch_files_tx.clone();
|
||||
|
||||
cx.spawn(|this, mut cx| async move {
|
||||
let t0 = Instant::now();
|
||||
|
@ -553,37 +543,6 @@ impl VectorStore {
|
|||
})
|
||||
.detach();
|
||||
|
||||
// cx.background()
|
||||
// .scoped(|scope| {
|
||||
// for _ in 0..cx.background().num_cpus() {
|
||||
// scope.spawn(async {
|
||||
// let mut parser = Parser::new();
|
||||
// let mut cursor = QueryCursor::new();
|
||||
// while let Ok((worktree_id, file_path, language, mtime)) =
|
||||
// parsing_files_rx.recv().await
|
||||
// {
|
||||
// log::info!("Parsing File: {:?}", &file_path);
|
||||
// if let Some((indexed_file, document_spans)) = Self::index_file(
|
||||
// &mut cursor,
|
||||
// &mut parser,
|
||||
// &fs,
|
||||
// language,
|
||||
// file_path.clone(),
|
||||
// mtime,
|
||||
// )
|
||||
// .await
|
||||
// .log_err()
|
||||
// {
|
||||
// batch_files_tx
|
||||
// .try_send((worktree_id, indexed_file, document_spans))
|
||||
// .unwrap();
|
||||
// }
|
||||
// }
|
||||
// });
|
||||
// }
|
||||
// })
|
||||
// .await;
|
||||
|
||||
this.update(&mut cx, |this, cx| {
|
||||
// The below is managing for updated on save
|
||||
// Currently each time a file is saved, this code is run, and for all the files that were changed, if the current time is
|
||||
|
@ -592,90 +551,90 @@ impl VectorStore {
|
|||
if let Some(project_state) = this.projects.get(&project.downgrade()) {
|
||||
let worktree_db_ids = project_state.worktree_db_ids.clone();
|
||||
|
||||
// if let project::Event::WorktreeUpdatedEntries(worktree_id, changes) = event
|
||||
// {
|
||||
// // Iterate through changes
|
||||
// let language_registry = this.language_registry.clone();
|
||||
if let project::Event::WorktreeUpdatedEntries(worktree_id, changes) = event
|
||||
{
|
||||
// Iterate through changes
|
||||
let language_registry = this.language_registry.clone();
|
||||
|
||||
// let db =
|
||||
// VectorDatabase::new(this.database_url.to_string_lossy().into());
|
||||
// if db.is_err() {
|
||||
// return;
|
||||
// }
|
||||
// let db = db.unwrap();
|
||||
let db =
|
||||
VectorDatabase::new(this.database_url.to_string_lossy().into());
|
||||
if db.is_err() {
|
||||
return;
|
||||
}
|
||||
let db = db.unwrap();
|
||||
|
||||
// let worktree_db_id: Option<i64> = {
|
||||
// let mut found_db_id = None;
|
||||
// for (w_id, db_id) in worktree_db_ids.into_iter() {
|
||||
// if &w_id == worktree_id {
|
||||
// found_db_id = Some(db_id);
|
||||
// }
|
||||
// }
|
||||
let worktree_db_id: Option<i64> = {
|
||||
let mut found_db_id = None;
|
||||
for (w_id, db_id) in worktree_db_ids.into_iter() {
|
||||
if &w_id == worktree_id {
|
||||
found_db_id = Some(db_id);
|
||||
}
|
||||
}
|
||||
|
||||
// found_db_id
|
||||
// };
|
||||
found_db_id
|
||||
};
|
||||
|
||||
// if worktree_db_id.is_none() {
|
||||
// return;
|
||||
// }
|
||||
// let worktree_db_id = worktree_db_id.unwrap();
|
||||
if worktree_db_id.is_none() {
|
||||
return;
|
||||
}
|
||||
let worktree_db_id = worktree_db_id.unwrap();
|
||||
|
||||
// let file_mtimes = db.get_file_mtimes(worktree_db_id);
|
||||
// if file_mtimes.is_err() {
|
||||
// return;
|
||||
// }
|
||||
let file_mtimes = db.get_file_mtimes(worktree_db_id);
|
||||
if file_mtimes.is_err() {
|
||||
return;
|
||||
}
|
||||
|
||||
// let file_mtimes = file_mtimes.unwrap();
|
||||
// let paths_tx = this.paths_tx.clone();
|
||||
let file_mtimes = file_mtimes.unwrap();
|
||||
let parsing_files_tx = this.parsing_files_tx.clone();
|
||||
|
||||
// smol::block_on(async move {
|
||||
// for change in changes.into_iter() {
|
||||
// let change_path = change.0.clone();
|
||||
// log::info!("Change: {:?}", &change_path);
|
||||
// if let Ok(language) = language_registry
|
||||
// .language_for_file(&change_path.to_path_buf(), None)
|
||||
// .await
|
||||
// {
|
||||
// if language
|
||||
// .grammar()
|
||||
// .and_then(|grammar| grammar.embedding_config.as_ref())
|
||||
// .is_none()
|
||||
// {
|
||||
// continue;
|
||||
// }
|
||||
smol::block_on(async move {
|
||||
for change in changes.into_iter() {
|
||||
let change_path = change.0.clone();
|
||||
log::info!("Change: {:?}", &change_path);
|
||||
if let Ok(language) = language_registry
|
||||
.language_for_file(&change_path.to_path_buf(), None)
|
||||
.await
|
||||
{
|
||||
if language
|
||||
.grammar()
|
||||
.and_then(|grammar| grammar.embedding_config.as_ref())
|
||||
.is_none()
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// // TODO: Make this a bit more defensive
|
||||
// let modified_time =
|
||||
// change_path.metadata().unwrap().modified().unwrap();
|
||||
// let existing_time =
|
||||
// file_mtimes.get(&change_path.to_path_buf());
|
||||
// let already_stored =
|
||||
// existing_time.map_or(false, |existing_time| {
|
||||
// if &modified_time != existing_time
|
||||
// && existing_time.elapsed().unwrap().as_secs()
|
||||
// > REINDEXING_DELAY
|
||||
// {
|
||||
// false
|
||||
// } else {
|
||||
// true
|
||||
// }
|
||||
// });
|
||||
// TODO: Make this a bit more defensive
|
||||
let modified_time =
|
||||
change_path.metadata().unwrap().modified().unwrap();
|
||||
let existing_time =
|
||||
file_mtimes.get(&change_path.to_path_buf());
|
||||
let already_stored =
|
||||
existing_time.map_or(false, |existing_time| {
|
||||
if &modified_time != existing_time
|
||||
&& existing_time.elapsed().unwrap().as_secs()
|
||||
> REINDEXING_DELAY
|
||||
{
|
||||
false
|
||||
} else {
|
||||
true
|
||||
}
|
||||
});
|
||||
|
||||
// if !already_stored {
|
||||
// log::info!("Need to reindex: {:?}", &change_path);
|
||||
// paths_tx
|
||||
// .try_send((
|
||||
// worktree_db_id,
|
||||
// change_path.to_path_buf(),
|
||||
// language,
|
||||
// modified_time,
|
||||
// ))
|
||||
// .unwrap();
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// })
|
||||
// }
|
||||
if !already_stored {
|
||||
log::info!("Need to reindex: {:?}", &change_path);
|
||||
parsing_files_tx
|
||||
.try_send((
|
||||
worktree_db_id,
|
||||
change_path.to_path_buf(),
|
||||
language,
|
||||
modified_time,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
|
|
Loading…
Reference in a new issue