add retrieve context button to inline assistant

This commit is contained in:
KCaverly 2023-10-03 11:19:54 +03:00
parent e9637267ef
commit bfe76467b0
4 changed files with 131 additions and 93 deletions

21
Cargo.lock generated
View file

@ -108,7 +108,7 @@ dependencies = [
"rusqlite",
"serde",
"serde_json",
"tiktoken-rs 0.5.4",
"tiktoken-rs",
"util",
]
@ -327,7 +327,7 @@ dependencies = [
"settings",
"smol",
"theme",
"tiktoken-rs 0.4.5",
"tiktoken-rs",
"util",
"uuid 1.4.1",
"workspace",
@ -6798,7 +6798,7 @@ dependencies = [
"smol",
"tempdir",
"theme",
"tiktoken-rs 0.5.4",
"tiktoken-rs",
"tree-sitter",
"tree-sitter-cpp",
"tree-sitter-elixir",
@ -7875,21 +7875,6 @@ dependencies = [
"weezl",
]
[[package]]
name = "tiktoken-rs"
version = "0.4.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "52aacc1cff93ba9d5f198c62c49c77fa0355025c729eed3326beaf7f33bc8614"
dependencies = [
"anyhow",
"base64 0.21.4",
"bstr",
"fancy-regex",
"lazy_static",
"parking_lot 0.12.1",
"rustc-hash",
]
[[package]]
name = "tiktoken-rs"
version = "0.5.4"

View file

@ -38,7 +38,7 @@ schemars.workspace = true
serde.workspace = true
serde_json.workspace = true
smol.workspace = true
tiktoken-rs = "0.4"
tiktoken-rs = "0.5"
[dev-dependencies]
editor = { path = "../editor", features = ["test-support"] }

View file

@ -437,8 +437,15 @@ impl AssistantPanel {
InlineAssistantEvent::Confirmed {
prompt,
include_conversation,
retrieve_context,
} => {
self.confirm_inline_assist(assist_id, prompt, *include_conversation, cx);
self.confirm_inline_assist(
assist_id,
prompt,
*include_conversation,
cx,
*retrieve_context,
);
}
InlineAssistantEvent::Canceled => {
self.finish_inline_assist(assist_id, true, cx);
@ -532,6 +539,7 @@ impl AssistantPanel {
user_prompt: &str,
include_conversation: bool,
cx: &mut ViewContext<Self>,
retrieve_context: bool,
) {
let conversation = if include_conversation {
self.active_editor()
@ -593,42 +601,49 @@ impl AssistantPanel {
let codegen_kind = codegen.read(cx).kind().clone();
let user_prompt = user_prompt.to_string();
let project = if let Some(workspace) = self.workspace.upgrade(cx) {
workspace.read(cx).project()
} else {
return;
};
let snippets = if retrieve_context {
let project = if let Some(workspace) = self.workspace.upgrade(cx) {
workspace.read(cx).project()
} else {
return;
};
let project = project.to_owned();
let search_results = if let Some(semantic_index) = self.semantic_index.clone() {
let search_results = semantic_index.update(cx, |this, cx| {
this.search_project(project, user_prompt.to_string(), 10, vec![], vec![], cx)
let project = project.to_owned();
let search_results = if let Some(semantic_index) = self.semantic_index.clone() {
let search_results = semantic_index.update(cx, |this, cx| {
this.search_project(project, user_prompt.to_string(), 10, vec![], vec![], cx)
});
cx.background()
.spawn(async move { search_results.await.unwrap_or_default() })
} else {
Task::ready(Vec::new())
};
let snippets = cx.spawn(|_, cx| async move {
let mut snippets = Vec::new();
for result in search_results.await {
snippets.push(result.buffer.read_with(&cx, |buffer, _| {
buffer
.snapshot()
.text_for_range(result.range)
.collect::<String>()
}));
}
snippets
});
cx.background()
.spawn(async move { search_results.await.unwrap_or_default() })
snippets
} else {
Task::ready(Vec::new())
};
let snippets = cx.spawn(|_, cx| async move {
let mut snippets = Vec::new();
for result in search_results.await {
snippets.push(result.buffer.read_with(&cx, |buffer, _| {
buffer
.snapshot()
.text_for_range(result.range)
.collect::<String>()
}));
}
snippets
});
let mut model = settings::get::<AssistantSettings>(cx)
.default_open_ai_model
.clone();
let model_name = model.full_name();
let prompt = cx.background().spawn(async move {
let snippets = snippets.await;
for snippet in &snippets {
println!("SNIPPET: \n{:?}", snippet);
}
let language_name = language_name.as_deref();
generate_content_prompt(
@ -638,13 +653,11 @@ impl AssistantPanel {
range,
codegen_kind,
snippets,
model_name,
)
});
let mut messages = Vec::new();
let mut model = settings::get::<AssistantSettings>(cx)
.default_open_ai_model
.clone();
if let Some(conversation) = conversation {
let conversation = conversation.read(cx);
let buffer = conversation.buffer.read(cx);
@ -1557,12 +1570,14 @@ impl Conversation {
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: self
.buffer
.read(cx)
.text_for_range(message.offset_range)
.collect(),
content: Some(
self.buffer
.read(cx)
.text_for_range(message.offset_range)
.collect(),
),
name: None,
function_call: None,
})
})
.collect::<Vec<_>>();
@ -2681,6 +2696,7 @@ enum InlineAssistantEvent {
Confirmed {
prompt: String,
include_conversation: bool,
retrieve_context: bool,
},
Canceled,
Dismissed,
@ -2922,6 +2938,7 @@ impl InlineAssistant {
cx.emit(InlineAssistantEvent::Confirmed {
prompt,
include_conversation: self.include_conversation,
retrieve_context: self.retrieve_context,
});
self.confirmed = true;
cx.notify();

View file

@ -1,8 +1,10 @@
use crate::codegen::CodegenKind;
use language::{BufferSnapshot, OffsetRangeExt, ToOffset};
use std::cmp;
use std::fmt::Write;
use std::iter;
use std::ops::Range;
use std::{fmt::Write, iter};
use tiktoken_rs::ChatCompletionRequestMessage;
fn summarize(buffer: &BufferSnapshot, selected_range: Range<impl ToOffset>) -> String {
#[derive(Debug)]
@ -122,69 +124,103 @@ pub fn generate_content_prompt(
range: Range<impl ToOffset>,
kind: CodegenKind,
search_results: Vec<String>,
model: &str,
) -> String {
let mut prompt = String::new();
const MAXIMUM_SNIPPET_TOKEN_COUNT: usize = 500;
let mut prompts = Vec::new();
// General Preamble
if let Some(language_name) = language_name {
writeln!(prompt, "You're an expert {language_name} engineer.\n").unwrap();
prompts.push(format!("You're an expert {language_name} engineer.\n"));
} else {
writeln!(prompt, "You're an expert engineer.\n").unwrap();
prompts.push("You're an expert engineer.\n".to_string());
}
// Snippets
let mut snippet_position = prompts.len() - 1;
let outline = summarize(buffer, range);
writeln!(
prompt,
"The file you are currently working on has the following outline:"
)
.unwrap();
prompts.push("The file you are currently working on has the following outline:".to_string());
if let Some(language_name) = language_name {
let language_name = language_name.to_lowercase();
writeln!(prompt, "```{language_name}\n{outline}\n```").unwrap();
prompts.push(format!("```{language_name}\n{outline}\n```"));
} else {
writeln!(prompt, "```\n{outline}\n```").unwrap();
prompts.push(format!("```\n{outline}\n```"));
}
match kind {
CodegenKind::Generate { position: _ } => {
writeln!(prompt, "In particular, the user's cursor is current on the '<|START|>' span in the above outline, with no text selected.").unwrap();
writeln!(
prompt,
"Assume the cursor is located where the `<|START|` marker is."
)
.unwrap();
writeln!(
prompt,
prompts.push("In particular, the user's cursor is currently on the '<|START|>' span in the above outline, with no text selected.".to_string());
prompts
.push("Assume the cursor is located where the `<|START|` marker is.".to_string());
prompts.push(
"Text can't be replaced, so assume your answer will be inserted at the cursor."
)
.unwrap();
writeln!(
prompt,
.to_string(),
);
prompts.push(format!(
"Generate text based on the users prompt: {user_prompt}"
)
.unwrap();
));
}
CodegenKind::Transform { range: _ } => {
writeln!(prompt, "In particular, the user has selected a section of the text between the '<|START|' and '|END|>' spans.").unwrap();
writeln!(
prompt,
prompts.push("In particular, the user has selected a section of the text between the '<|START|' and '|END|>' spans.".to_string());
prompts.push(format!(
"Modify the users code selected text based upon the users prompt: {user_prompt}"
)
.unwrap();
writeln!(
prompt,
"You MUST reply with only the adjusted code (within the '<|START|' and '|END|>' spans), not the entire file."
)
.unwrap();
));
prompts.push("You MUST reply with only the adjusted code (within the '<|START|' and '|END|>' spans), not the entire file.".to_string());
}
}
if let Some(language_name) = language_name {
writeln!(prompt, "Your answer MUST always be valid {language_name}").unwrap();
prompts.push(format!("Your answer MUST always be valid {language_name}"));
}
writeln!(prompt, "Always wrap your response in a Markdown codeblock").unwrap();
writeln!(prompt, "Never make remarks about the output.").unwrap();
prompts.push("Always wrap your response in a Markdown codeblock".to_string());
prompts.push("Never make remarks about the output.".to_string());
let current_messages = [ChatCompletionRequestMessage {
role: "user".to_string(),
content: Some(prompts.join("\n")),
function_call: None,
name: None,
}];
let remaining_token_count = if let Ok(current_token_count) =
tiktoken_rs::num_tokens_from_messages(model, &current_messages)
{
let max_token_count = tiktoken_rs::model::get_context_size(model);
max_token_count - current_token_count
} else {
// If tiktoken fails to count token count, assume we have no space remaining.
0
};
// TODO:
// - add repository name to snippet
// - add file path
// - add language
if let Ok(encoding) = tiktoken_rs::get_bpe_from_model(model) {
let template = "You are working inside a large repository, here are a few code snippets that may be useful";
for search_result in search_results {
let mut snippet_prompt = template.to_string();
writeln!(snippet_prompt, "```\n{search_result}\n```").unwrap();
let token_count = encoding
.encode_with_special_tokens(snippet_prompt.as_str())
.len();
if token_count <= remaining_token_count {
if token_count < MAXIMUM_SNIPPET_TOKEN_COUNT {
prompts.insert(snippet_position, snippet_prompt);
snippet_position += 1;
}
} else {
break;
}
}
}
let prompt = prompts.join("\n");
println!("PROMPT: {:?}", prompt);
prompt
}