mirror of
https://github.com/zed-industries/zed.git
synced 2024-12-27 02:48:34 +00:00
add glob filtering functionality to semantic search
This commit is contained in:
parent
efe973ebe2
commit
e02d6bc0d4
6 changed files with 149 additions and 22 deletions
1
Cargo.lock
generated
1
Cargo.lock
generated
|
@ -6477,6 +6477,7 @@ dependencies = [
|
|||
"editor",
|
||||
"env_logger 0.9.3",
|
||||
"futures 0.3.28",
|
||||
"globset",
|
||||
"gpui",
|
||||
"isahc",
|
||||
"language",
|
||||
|
|
|
@ -187,14 +187,26 @@ impl ProjectSearch {
|
|||
cx.notify();
|
||||
}
|
||||
|
||||
fn semantic_search(&mut self, query: String, cx: &mut ModelContext<Self>) {
|
||||
fn semantic_search(
|
||||
&mut self,
|
||||
query: String,
|
||||
include_files: Vec<GlobMatcher>,
|
||||
exclude_files: Vec<GlobMatcher>,
|
||||
cx: &mut ModelContext<Self>,
|
||||
) {
|
||||
let search = SemanticIndex::global(cx).map(|index| {
|
||||
index.update(cx, |semantic_index, cx| {
|
||||
semantic_index.search_project(self.project.clone(), query.clone(), 10, cx)
|
||||
semantic_index.search_project(
|
||||
self.project.clone(),
|
||||
query.clone(),
|
||||
10,
|
||||
include_files,
|
||||
exclude_files,
|
||||
cx,
|
||||
)
|
||||
})
|
||||
});
|
||||
self.search_id += 1;
|
||||
// self.active_query = Some(query);
|
||||
self.match_ranges.clear();
|
||||
self.pending_search = Some(cx.spawn(|this, mut cx| async move {
|
||||
let results = search?.await.log_err()?;
|
||||
|
@ -638,8 +650,13 @@ impl ProjectSearchView {
|
|||
}
|
||||
|
||||
let query = self.query_editor.read(cx).text(cx);
|
||||
self.model
|
||||
.update(cx, |model, cx| model.semantic_search(query, cx));
|
||||
if let Some((included_files, exclude_files)) =
|
||||
self.get_included_and_excluded_globsets(cx)
|
||||
{
|
||||
self.model.update(cx, |model, cx| {
|
||||
model.semantic_search(query, included_files, exclude_files, cx)
|
||||
});
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -648,6 +665,39 @@ impl ProjectSearchView {
|
|||
}
|
||||
}
|
||||
|
||||
fn get_included_and_excluded_globsets(
|
||||
&mut self,
|
||||
cx: &mut ViewContext<Self>,
|
||||
) -> Option<(Vec<GlobMatcher>, Vec<GlobMatcher>)> {
|
||||
let text = self.query_editor.read(cx).text(cx);
|
||||
let included_files =
|
||||
match Self::load_glob_set(&self.included_files_editor.read(cx).text(cx)) {
|
||||
Ok(included_files) => {
|
||||
self.panels_with_errors.remove(&InputPanel::Include);
|
||||
included_files
|
||||
}
|
||||
Err(_e) => {
|
||||
self.panels_with_errors.insert(InputPanel::Include);
|
||||
cx.notify();
|
||||
return None;
|
||||
}
|
||||
};
|
||||
let excluded_files =
|
||||
match Self::load_glob_set(&self.excluded_files_editor.read(cx).text(cx)) {
|
||||
Ok(excluded_files) => {
|
||||
self.panels_with_errors.remove(&InputPanel::Exclude);
|
||||
excluded_files
|
||||
}
|
||||
Err(_e) => {
|
||||
self.panels_with_errors.insert(InputPanel::Exclude);
|
||||
cx.notify();
|
||||
return None;
|
||||
}
|
||||
};
|
||||
|
||||
Some((included_files, excluded_files))
|
||||
}
|
||||
|
||||
fn build_search_query(&mut self, cx: &mut ViewContext<Self>) -> Option<SearchQuery> {
|
||||
let text = self.query_editor.read(cx).text(cx);
|
||||
let included_files =
|
||||
|
|
|
@ -37,6 +37,7 @@ tiktoken-rs = "0.5.0"
|
|||
parking_lot.workspace = true
|
||||
rand.workspace = true
|
||||
schemars.workspace = true
|
||||
globset.workspace = true
|
||||
|
||||
[dev-dependencies]
|
||||
gpui = { path = "../gpui", features = ["test-support"] }
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
use crate::{parsing::Document, SEMANTIC_INDEX_VERSION};
|
||||
use anyhow::{anyhow, Context, Result};
|
||||
use globset::{Glob, GlobMatcher};
|
||||
use project::Fs;
|
||||
use rpc::proto::Timestamp;
|
||||
use rusqlite::{
|
||||
|
@ -252,18 +253,30 @@ impl VectorDatabase {
|
|||
worktree_ids: &[i64],
|
||||
query_embedding: &Vec<f32>,
|
||||
limit: usize,
|
||||
include_globs: Vec<GlobMatcher>,
|
||||
exclude_globs: Vec<GlobMatcher>,
|
||||
) -> Result<Vec<(i64, PathBuf, Range<usize>)>> {
|
||||
let mut results = Vec::<(i64, f32)>::with_capacity(limit + 1);
|
||||
self.for_each_document(&worktree_ids, |id, embedding| {
|
||||
let similarity = dot(&embedding, &query_embedding);
|
||||
let ix = match results
|
||||
.binary_search_by(|(_, s)| similarity.partial_cmp(&s).unwrap_or(Ordering::Equal))
|
||||
self.for_each_document(&worktree_ids, |relative_path, id, embedding| {
|
||||
if (include_globs.is_empty()
|
||||
|| include_globs
|
||||
.iter()
|
||||
.any(|include_glob| include_glob.is_match(relative_path.clone())))
|
||||
&& (exclude_globs.is_empty()
|
||||
|| !exclude_globs
|
||||
.iter()
|
||||
.any(|exclude_glob| exclude_glob.is_match(relative_path.clone())))
|
||||
{
|
||||
Ok(ix) => ix,
|
||||
Err(ix) => ix,
|
||||
};
|
||||
results.insert(ix, (id, similarity));
|
||||
results.truncate(limit);
|
||||
let similarity = dot(&embedding, &query_embedding);
|
||||
let ix = match results.binary_search_by(|(_, s)| {
|
||||
similarity.partial_cmp(&s).unwrap_or(Ordering::Equal)
|
||||
}) {
|
||||
Ok(ix) => ix,
|
||||
Err(ix) => ix,
|
||||
};
|
||||
results.insert(ix, (id, similarity));
|
||||
results.truncate(limit);
|
||||
}
|
||||
})?;
|
||||
|
||||
let ids = results.into_iter().map(|(id, _)| id).collect::<Vec<_>>();
|
||||
|
@ -273,12 +286,12 @@ impl VectorDatabase {
|
|||
fn for_each_document(
|
||||
&self,
|
||||
worktree_ids: &[i64],
|
||||
mut f: impl FnMut(i64, Vec<f32>),
|
||||
mut f: impl FnMut(String, i64, Vec<f32>),
|
||||
) -> Result<()> {
|
||||
let mut query_statement = self.db.prepare(
|
||||
"
|
||||
SELECT
|
||||
documents.id, documents.embedding
|
||||
files.relative_path, documents.id, documents.embedding
|
||||
FROM
|
||||
documents, files
|
||||
WHERE
|
||||
|
@ -289,10 +302,10 @@ impl VectorDatabase {
|
|||
|
||||
query_statement
|
||||
.query_map(params![ids_to_sql(worktree_ids)], |row| {
|
||||
Ok((row.get(0)?, row.get::<_, Embedding>(1)?))
|
||||
Ok((row.get(0)?, row.get(1)?, row.get::<_, Embedding>(2)?))
|
||||
})?
|
||||
.filter_map(|row| row.ok())
|
||||
.for_each(|(id, embedding)| f(id, embedding.0));
|
||||
.for_each(|(relative_path, id, embedding)| f(relative_path, id, embedding.0));
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
|
|
@ -11,6 +11,7 @@ use anyhow::{anyhow, Result};
|
|||
use db::VectorDatabase;
|
||||
use embedding::{EmbeddingProvider, OpenAIEmbeddings};
|
||||
use futures::{channel::oneshot, Future};
|
||||
use globset::{Glob, GlobMatcher};
|
||||
use gpui::{AppContext, AsyncAppContext, Entity, ModelContext, ModelHandle, Task, WeakModelHandle};
|
||||
use language::{Anchor, Buffer, Language, LanguageRegistry};
|
||||
use parking_lot::Mutex;
|
||||
|
@ -624,6 +625,8 @@ impl SemanticIndex {
|
|||
project: ModelHandle<Project>,
|
||||
phrase: String,
|
||||
limit: usize,
|
||||
include_globs: Vec<GlobMatcher>,
|
||||
exclude_globs: Vec<GlobMatcher>,
|
||||
cx: &mut ModelContext<Self>,
|
||||
) -> Task<Result<Vec<SearchResult>>> {
|
||||
let project_state = if let Some(state) = self.projects.get(&project.downgrade()) {
|
||||
|
@ -657,12 +660,16 @@ impl SemanticIndex {
|
|||
.next()
|
||||
.unwrap();
|
||||
|
||||
database.top_k_search(&worktree_db_ids, &phrase_embedding, limit)
|
||||
database.top_k_search(
|
||||
&worktree_db_ids,
|
||||
&phrase_embedding,
|
||||
limit,
|
||||
include_globs,
|
||||
exclude_globs,
|
||||
)
|
||||
})
|
||||
.await?;
|
||||
|
||||
dbg!(&documents);
|
||||
|
||||
let mut tasks = Vec::new();
|
||||
let mut ranges = Vec::new();
|
||||
let weak_project = project.downgrade();
|
||||
|
|
|
@ -7,6 +7,7 @@ use crate::{
|
|||
};
|
||||
use anyhow::Result;
|
||||
use async_trait::async_trait;
|
||||
use globset::Glob;
|
||||
use gpui::{Task, TestAppContext};
|
||||
use language::{Language, LanguageConfig, LanguageRegistry, ToOffset};
|
||||
use pretty_assertions::assert_eq;
|
||||
|
@ -96,7 +97,7 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
|
|||
|
||||
let search_results = store
|
||||
.update(cx, |store, cx| {
|
||||
store.search_project(project.clone(), "aaaa".to_string(), 5, cx)
|
||||
store.search_project(project.clone(), "aaaa".to_string(), 5, vec![], vec![], cx)
|
||||
})
|
||||
.await
|
||||
.unwrap();
|
||||
|
@ -109,6 +110,60 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
|
|||
);
|
||||
});
|
||||
|
||||
// Test Include Files Functonality
|
||||
let include_files = vec![Glob::new("*.rs").unwrap().compile_matcher()];
|
||||
let exclude_files = vec![Glob::new("*.rs").unwrap().compile_matcher()];
|
||||
let search_results = store
|
||||
.update(cx, |store, cx| {
|
||||
store.search_project(
|
||||
project.clone(),
|
||||
"aaaa".to_string(),
|
||||
5,
|
||||
include_files,
|
||||
vec![],
|
||||
cx,
|
||||
)
|
||||
})
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
for res in &search_results {
|
||||
res.buffer.read_with(cx, |buffer, _cx| {
|
||||
assert!(buffer
|
||||
.file()
|
||||
.unwrap()
|
||||
.path()
|
||||
.to_str()
|
||||
.unwrap()
|
||||
.ends_with("rs"));
|
||||
});
|
||||
}
|
||||
|
||||
let search_results = store
|
||||
.update(cx, |store, cx| {
|
||||
store.search_project(
|
||||
project.clone(),
|
||||
"aaaa".to_string(),
|
||||
5,
|
||||
vec![],
|
||||
exclude_files,
|
||||
cx,
|
||||
)
|
||||
})
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
for res in &search_results {
|
||||
res.buffer.read_with(cx, |buffer, _cx| {
|
||||
assert!(!buffer
|
||||
.file()
|
||||
.unwrap()
|
||||
.path()
|
||||
.to_str()
|
||||
.unwrap()
|
||||
.ends_with("rs"));
|
||||
});
|
||||
}
|
||||
fs.save(
|
||||
"/the-root/src/file2.rs".as_ref(),
|
||||
&"
|
||||
|
|
Loading…
Reference in a new issue