mirror of
https://github.com/zed-industries/zed.git
synced 2025-01-24 11:01:54 +00:00
implement new search strategy (#3029)
Augment current search strategy in semantic search, reducing search times by ~60% Release Notes: - Implemented minimum batch sizes for concurrent database reads. - Batch embedding matrix multiplication. - Calculate matmul with ndarray
This commit is contained in:
commit
edf29aa67d
5 changed files with 128 additions and 47 deletions
25
Cargo.lock
generated
25
Cargo.lock
generated
|
@ -4580,6 +4580,19 @@ dependencies = [
|
|||
"tempfile",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ndarray"
|
||||
version = "0.15.6"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "adb12d4e967ec485a5f71c6311fe28158e9d6f4bc4a447b474184d0f91a8fa32"
|
||||
dependencies = [
|
||||
"matrixmultiply",
|
||||
"num-complex 0.4.4",
|
||||
"num-integer",
|
||||
"num-traits",
|
||||
"rawpointer",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ndk"
|
||||
version = "0.7.0"
|
||||
|
@ -4706,7 +4719,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
|||
checksum = "b8536030f9fea7127f841b45bb6243b27255787fb4eb83958aa1ef9d2fdc0c36"
|
||||
dependencies = [
|
||||
"num-bigint 0.2.6",
|
||||
"num-complex",
|
||||
"num-complex 0.2.4",
|
||||
"num-integer",
|
||||
"num-iter",
|
||||
"num-rational 0.2.4",
|
||||
|
@ -4762,6 +4775,15 @@ dependencies = [
|
|||
"num-traits",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "num-complex"
|
||||
version = "0.4.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1ba157ca0885411de85d6ca030ba7e2a83a28636056c7c699b07c8b6f7383214"
|
||||
dependencies = [
|
||||
"num-traits",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "num-derive"
|
||||
version = "0.3.3"
|
||||
|
@ -6751,6 +6773,7 @@ dependencies = [
|
|||
"language",
|
||||
"lazy_static",
|
||||
"log",
|
||||
"ndarray",
|
||||
"node_runtime",
|
||||
"ordered-float",
|
||||
"parking_lot 0.11.2",
|
||||
|
|
|
@ -39,6 +39,7 @@ rand.workspace = true
|
|||
schemars.workspace = true
|
||||
globset.workspace = true
|
||||
sha1 = "0.10.5"
|
||||
ndarray = { version = "0.15.0" }
|
||||
|
||||
[dev-dependencies]
|
||||
collections = { path = "../collections", features = ["test-support"] }
|
||||
|
|
|
@ -7,13 +7,13 @@ use anyhow::{anyhow, Context, Result};
|
|||
use collections::HashMap;
|
||||
use futures::channel::oneshot;
|
||||
use gpui::executor;
|
||||
use ndarray::{Array1, Array2};
|
||||
use ordered_float::OrderedFloat;
|
||||
use project::{search::PathMatcher, Fs};
|
||||
use rpc::proto::Timestamp;
|
||||
use rusqlite::params;
|
||||
use rusqlite::types::Value;
|
||||
use std::{
|
||||
cmp::Reverse,
|
||||
future::Future,
|
||||
ops::Range,
|
||||
path::{Path, PathBuf},
|
||||
|
@ -23,6 +23,13 @@ use std::{
|
|||
};
|
||||
use util::TryFutureExt;
|
||||
|
||||
pub fn argsort<T: Ord>(data: &[T]) -> Vec<usize> {
|
||||
let mut indices = (0..data.len()).collect::<Vec<_>>();
|
||||
indices.sort_by_key(|&i| &data[i]);
|
||||
indices.reverse();
|
||||
indices
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct FileRecord {
|
||||
pub id: usize,
|
||||
|
@ -409,23 +416,91 @@ impl VectorDatabase {
|
|||
limit: usize,
|
||||
file_ids: &[i64],
|
||||
) -> impl Future<Output = Result<Vec<(i64, OrderedFloat<f32>)>>> {
|
||||
let query_embedding = query_embedding.clone();
|
||||
let file_ids = file_ids.to_vec();
|
||||
let query = query_embedding.clone().0;
|
||||
let query = Array1::from_vec(query);
|
||||
self.transact(move |db| {
|
||||
let mut results = Vec::<(i64, OrderedFloat<f32>)>::with_capacity(limit + 1);
|
||||
Self::for_each_span(db, &file_ids, |id, embedding| {
|
||||
let similarity = embedding.similarity(&query_embedding);
|
||||
let ix = match results
|
||||
.binary_search_by_key(&Reverse(similarity), |(_, s)| Reverse(*s))
|
||||
{
|
||||
Ok(ix) => ix,
|
||||
Err(ix) => ix,
|
||||
};
|
||||
results.insert(ix, (id, similarity));
|
||||
results.truncate(limit);
|
||||
})?;
|
||||
let mut query_statement = db.prepare(
|
||||
"
|
||||
SELECT
|
||||
id, embedding
|
||||
FROM
|
||||
spans
|
||||
WHERE
|
||||
file_id IN rarray(?)
|
||||
",
|
||||
)?;
|
||||
|
||||
anyhow::Ok(results)
|
||||
let deserialized_rows = query_statement
|
||||
.query_map(params![ids_to_sql(&file_ids)], |row| {
|
||||
Ok((row.get::<_, usize>(0)?, row.get::<_, Embedding>(1)?))
|
||||
})?
|
||||
.filter_map(|row| row.ok())
|
||||
.collect::<Vec<(usize, Embedding)>>();
|
||||
|
||||
if deserialized_rows.len() == 0 {
|
||||
return Ok(Vec::new());
|
||||
}
|
||||
|
||||
// Get Length of Embeddings Returned
|
||||
let embedding_len = deserialized_rows[0].1 .0.len();
|
||||
|
||||
let batch_n = 1000;
|
||||
let mut batches = Vec::new();
|
||||
let mut batch_ids = Vec::new();
|
||||
let mut batch_embeddings: Vec<f32> = Vec::new();
|
||||
deserialized_rows.iter().for_each(|(id, embedding)| {
|
||||
batch_ids.push(id);
|
||||
batch_embeddings.extend(&embedding.0);
|
||||
|
||||
if batch_ids.len() == batch_n {
|
||||
let embeddings = std::mem::take(&mut batch_embeddings);
|
||||
let ids = std::mem::take(&mut batch_ids);
|
||||
let array =
|
||||
Array2::from_shape_vec((ids.len(), embedding_len.clone()), embeddings);
|
||||
match array {
|
||||
Ok(array) => {
|
||||
batches.push((ids, array));
|
||||
}
|
||||
Err(err) => log::error!("Failed to deserialize to ndarray: {:?}", err),
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
if batch_ids.len() > 0 {
|
||||
let array = Array2::from_shape_vec(
|
||||
(batch_ids.len(), embedding_len),
|
||||
batch_embeddings.clone(),
|
||||
);
|
||||
match array {
|
||||
Ok(array) => {
|
||||
batches.push((batch_ids.clone(), array));
|
||||
}
|
||||
Err(err) => log::error!("Failed to deserialize to ndarray: {:?}", err),
|
||||
}
|
||||
}
|
||||
|
||||
let mut ids: Vec<usize> = Vec::new();
|
||||
let mut results = Vec::new();
|
||||
for (batch_ids, array) in batches {
|
||||
let scores = array
|
||||
.dot(&query.t())
|
||||
.to_vec()
|
||||
.iter()
|
||||
.map(|score| OrderedFloat(*score))
|
||||
.collect::<Vec<OrderedFloat<f32>>>();
|
||||
results.extend(scores);
|
||||
ids.extend(batch_ids);
|
||||
}
|
||||
|
||||
let sorted_idx = argsort(&results);
|
||||
let mut sorted_results = Vec::new();
|
||||
let last_idx = limit.min(sorted_idx.len());
|
||||
for idx in &sorted_idx[0..last_idx] {
|
||||
sorted_results.push((ids[*idx] as i64, results[*idx]))
|
||||
}
|
||||
|
||||
Ok(sorted_results)
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -468,31 +543,6 @@ impl VectorDatabase {
|
|||
})
|
||||
}
|
||||
|
||||
fn for_each_span(
|
||||
db: &rusqlite::Connection,
|
||||
file_ids: &[i64],
|
||||
mut f: impl FnMut(i64, Embedding),
|
||||
) -> Result<()> {
|
||||
let mut query_statement = db.prepare(
|
||||
"
|
||||
SELECT
|
||||
id, embedding
|
||||
FROM
|
||||
spans
|
||||
WHERE
|
||||
file_id IN rarray(?)
|
||||
",
|
||||
)?;
|
||||
|
||||
query_statement
|
||||
.query_map(params![ids_to_sql(&file_ids)], |row| {
|
||||
Ok((row.get(0)?, row.get::<_, Embedding>(1)?))
|
||||
})?
|
||||
.filter_map(|row| row.ok())
|
||||
.for_each(|(id, embedding)| f(id, embedding));
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn spans_for_ids(
|
||||
&self,
|
||||
ids: &[i64],
|
||||
|
|
|
@ -705,11 +705,13 @@ impl SemanticIndex {
|
|||
|
||||
cx.spawn(|this, mut cx| async move {
|
||||
index.await?;
|
||||
let t0 = Instant::now();
|
||||
let query = embedding_provider
|
||||
.embed_batch(vec![query])
|
||||
.await?
|
||||
.pop()
|
||||
.ok_or_else(|| anyhow!("could not embed query"))?;
|
||||
log::trace!("Embedding Search Query: {:?}ms", t0.elapsed().as_millis());
|
||||
|
||||
let search_start = Instant::now();
|
||||
let modified_buffer_results = this.update(&mut cx, |this, cx| {
|
||||
|
@ -787,10 +789,15 @@ impl SemanticIndex {
|
|||
|
||||
let batch_n = cx.background().num_cpus();
|
||||
let ids_len = file_ids.clone().len();
|
||||
let batch_size = if ids_len <= batch_n {
|
||||
ids_len
|
||||
} else {
|
||||
ids_len / batch_n
|
||||
let minimum_batch_size = 50;
|
||||
|
||||
let batch_size = {
|
||||
let size = ids_len / batch_n;
|
||||
if size < minimum_batch_size {
|
||||
minimum_batch_size
|
||||
} else {
|
||||
size
|
||||
}
|
||||
};
|
||||
|
||||
let mut batch_results = Vec::new();
|
||||
|
@ -822,6 +829,7 @@ impl SemanticIndex {
|
|||
Ok(ix) => ix,
|
||||
Err(ix) => ix,
|
||||
};
|
||||
|
||||
results.insert(ix, (id, similarity));
|
||||
results.truncate(limit);
|
||||
}
|
||||
|
@ -856,7 +864,6 @@ impl SemanticIndex {
|
|||
})?;
|
||||
|
||||
let buffers = futures::future::join_all(tasks).await;
|
||||
|
||||
Ok(buffers
|
||||
.into_iter()
|
||||
.zip(ranges)
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
#!/bin/bash
|
||||
|
||||
cargo run -p semantic_index --example eval
|
||||
RUST_LOG=semantic_index=trace cargo run -p semantic_index --example eval --release
|
||||
|
|
Loading…
Reference in a new issue