In this pull request, we change the zed.dev protocol so that we pass the
raw JSON for the specified provider directly to our server. This avoids
the need to define a protobuf message that's a superset of all these
formats.
@bennetbo: We also changed the settings for available_models under
zed.dev to be a flat format, because the nesting seemed too confusing.
Can you help us upgrade the local provider configuration to be
consistent with this? We do whatever we need to do when parsing the
settings to make this simple for users, even if it's a bit more complex
on our end. We want to use versioning to avoid breaking existing users,
but need to keep making progress.
```json
"zed.dev": {
"available_models": [
{
"provider": "anthropic",
"name": "some-newly-released-model-we-havent-added",
"max_tokens": 200000
}
]
}
```
Release Notes:
- N/A
---------
Co-authored-by: Nathan <nathan@zed.dev>
<img width="624" alt="image"
src="https://github.com/user-attachments/assets/f492b0bd-14c3-49e2-b2ff-dc78e52b0815">
- [x] Correctly set custom model token count
- [x] How to count tokens for Gemini models?
- [x] Feature flag zed.dev provider
- [x] Figure out how to configure custom models
- [ ] Update docs
Release Notes:
- Added support for quickly switching between multiple language model
providers in the assistant panel
---------
Co-authored-by: Antonio <antonio@zed.dev>
We will soon need `semantic_index` to be able to use
`CompletionProvider`. This is currently impossible due to a cyclic crate
dependency, because `CompletionProvider` lives in the `assistant` crate,
which depends on `semantic_index`.
This PR breaks the dependency cycle by extracting two crates out of
`assistant`: `language_model` and `completion`.
Only one piece of logic changed: [this
code](922fcaf5a6 (diff-3857b3707687a4d585f1200eec4c34a7a079eae8d303b4ce5b4fce46234ace9fR61-R69)).
* As of https://github.com/zed-industries/zed/pull/13276, whenever we
ask a given completion provider for its available models, OpenAI
providers would go and ask the global assistant settings whether the
user had configured an `available_models` setting, and if so, return
that.
* This PR changes it so that instead of eagerly asking the assistant
settings for this info (the new crate must not depend on `assistant`, or
else the dependency cycle would be back), OpenAI completion providers
now store the user-configured settings as part of their struct, and
whenever the settings change, we update the provider.
In theory, this change should not change user-visible behavior...but
since it's the only change in this large PR that's more than just moving
code around, I'm mentioning it here in case there's an unexpected
regression in practice! (cc @amtoaer in case you'd like to try out this
branch and verify that the feature is still working the way you expect.)
Release Notes:
- N/A
---------
Co-authored-by: Marshall Bowers <elliott.codes@gmail.com>