use crate::{ px, size, Action, AnyBox, AnyDrag, AnyView, AppContext, AsyncWindowContext, AvailableSpace, Bounds, BoxShadow, Context, Corners, DevicePixels, DispatchContext, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, FocusEvent, FontId, GlobalElementId, GlyphId, Hsla, ImageData, InputEvent, IsZero, KeyListener, KeyMatch, KeyMatcher, Keystroke, LayoutId, Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseDownEvent, MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams, RenderSvgParams, ScaledPixels, SceneBuilder, Shadow, SharedString, Size, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, Underline, UnderlineStyle, View, VisualContext, WeakView, WindowBounds, WindowOptions, SUBPIXEL_VARIANTS, }; use anyhow::{anyhow, Result}; use collections::HashMap; use derive_more::{Deref, DerefMut}; use futures::{ channel::{mpsc, oneshot}, StreamExt, }; use parking_lot::RwLock; use slotmap::SlotMap; use smallvec::SmallVec; use std::{ any::{Any, TypeId}, borrow::{Borrow, BorrowMut, Cow}, fmt::Debug, future::Future, hash::{Hash, Hasher}, marker::PhantomData, mem, rc::Rc, sync::{ atomic::{AtomicUsize, Ordering::SeqCst}, Arc, }, }; use util::ResultExt; /// A global stacking order, which is created by stacking successive z-index values. /// Each z-index will always be interpreted in the context of its parent z-index. #[derive(Deref, DerefMut, Ord, PartialOrd, Eq, PartialEq, Clone, Default)] pub(crate) struct StackingOrder(pub(crate) SmallVec<[u32; 16]>); /// Represents the two different phases when dispatching events. #[derive(Default, Copy, Clone, Debug, Eq, PartialEq)] pub enum DispatchPhase { /// After the capture phase comes the bubble phase, in which mouse event listeners are /// invoked front to back and keyboard event listeners are invoked from the focused element /// to the root of the element tree. This is the phase you'll most commonly want to use when /// registering event listeners. #[default] Bubble, /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard /// listeners are invoked from the root of the tree downward toward the focused element. This phase /// is used for special purposes such as clearing the "pressed" state for click events. If /// you stop event propagation during this phase, you need to know what you're doing. Handlers /// outside of the immediate region may rely on detecting non-local events during this phase. Capture, } type AnyObserver = Box bool + 'static>; type AnyListener = Box; type AnyKeyListener = Box< dyn Fn( &dyn Any, &[&DispatchContext], DispatchPhase, &mut WindowContext, ) -> Option> + 'static, >; type AnyFocusListener = Box; slotmap::new_key_type! { pub struct FocusId; } /// A handle which can be used to track and manipulate the focused element in a window. pub struct FocusHandle { pub(crate) id: FocusId, handles: Arc>>, } impl FocusHandle { pub(crate) fn new(handles: &Arc>>) -> Self { let id = handles.write().insert(AtomicUsize::new(1)); Self { id, handles: handles.clone(), } } pub(crate) fn for_id( id: FocusId, handles: &Arc>>, ) -> Option { let lock = handles.read(); let ref_count = lock.get(id)?; if ref_count.load(SeqCst) == 0 { None } else { ref_count.fetch_add(1, SeqCst); Some(Self { id, handles: handles.clone(), }) } } /// Obtains whether the element associated with this handle is currently focused. pub fn is_focused(&self, cx: &WindowContext) -> bool { cx.window.focus == Some(self.id) } /// Obtains whether the element associated with this handle contains the focused /// element or is itself focused. pub fn contains_focused(&self, cx: &WindowContext) -> bool { cx.focused() .map_or(false, |focused| self.contains(&focused, cx)) } /// Obtains whether the element associated with this handle is contained within the /// focused element or is itself focused. pub fn within_focused(&self, cx: &WindowContext) -> bool { let focused = cx.focused(); focused.map_or(false, |focused| focused.contains(self, cx)) } /// Obtains whether this handle contains the given handle in the most recently rendered frame. pub(crate) fn contains(&self, other: &Self, cx: &WindowContext) -> bool { let mut ancestor = Some(other.id); while let Some(ancestor_id) = ancestor { if self.id == ancestor_id { return true; } else { ancestor = cx.window.focus_parents_by_child.get(&ancestor_id).copied(); } } false } } impl Clone for FocusHandle { fn clone(&self) -> Self { Self::for_id(self.id, &self.handles).unwrap() } } impl PartialEq for FocusHandle { fn eq(&self, other: &Self) -> bool { self.id == other.id } } impl Eq for FocusHandle {} impl Drop for FocusHandle { fn drop(&mut self) { self.handles .read() .get(self.id) .unwrap() .fetch_sub(1, SeqCst); } } // Holds the state for a specific window. pub struct Window { pub(crate) handle: AnyWindowHandle, pub(crate) removed: bool, platform_window: Box, display_id: DisplayId, sprite_atlas: Arc, rem_size: Pixels, content_size: Size, pub(crate) layout_engine: TaffyLayoutEngine, pub(crate) root_view: Option, pub(crate) element_id_stack: GlobalElementId, prev_frame_element_states: HashMap, element_states: HashMap, prev_frame_key_matchers: HashMap, key_matchers: HashMap, z_index_stack: StackingOrder, content_mask_stack: Vec>, element_offset_stack: Vec>, mouse_listeners: HashMap>, key_dispatch_stack: Vec, freeze_key_dispatch_stack: bool, focus_stack: Vec, focus_parents_by_child: HashMap, pub(crate) focus_listeners: Vec, pub(crate) focus_handles: Arc>>, default_prevented: bool, mouse_position: Point, scale_factor: f32, bounds: WindowBounds, bounds_observers: SubscriberSet<(), AnyObserver>, active: bool, activation_observers: SubscriberSet<(), AnyObserver>, pub(crate) scene_builder: SceneBuilder, pub(crate) dirty: bool, pub(crate) last_blur: Option>, pub(crate) focus: Option, } impl Window { pub(crate) fn new( handle: AnyWindowHandle, options: WindowOptions, cx: &mut AppContext, ) -> Self { let platform_window = cx.platform.open_window(handle, options); let display_id = platform_window.display().id(); let sprite_atlas = platform_window.sprite_atlas(); let mouse_position = platform_window.mouse_position(); let content_size = platform_window.content_size(); let scale_factor = platform_window.scale_factor(); let bounds = platform_window.bounds(); platform_window.on_resize(Box::new({ let mut cx = cx.to_async(); move |_, _| { handle .update(&mut cx, |_, cx| cx.window_bounds_changed()) .log_err(); } })); platform_window.on_moved(Box::new({ let mut cx = cx.to_async(); move || { handle .update(&mut cx, |_, cx| cx.window_bounds_changed()) .log_err(); } })); platform_window.on_active_status_change(Box::new({ let mut cx = cx.to_async(); move |active| { handle .update(&mut cx, |_, cx| { cx.window.active = active; cx.window .activation_observers .clone() .retain(&(), |callback| callback(cx)); }) .log_err(); } })); platform_window.on_input({ let mut cx = cx.to_async(); Box::new(move |event| { handle .update(&mut cx, |_, cx| cx.dispatch_event(event)) .log_err() .unwrap_or(true) }) }); Window { handle, removed: false, platform_window, display_id, sprite_atlas, rem_size: px(16.), content_size, layout_engine: TaffyLayoutEngine::new(), root_view: None, element_id_stack: GlobalElementId::default(), prev_frame_element_states: HashMap::default(), element_states: HashMap::default(), prev_frame_key_matchers: HashMap::default(), key_matchers: HashMap::default(), z_index_stack: StackingOrder(SmallVec::new()), content_mask_stack: Vec::new(), element_offset_stack: Vec::new(), mouse_listeners: HashMap::default(), key_dispatch_stack: Vec::new(), freeze_key_dispatch_stack: false, focus_stack: Vec::new(), focus_parents_by_child: HashMap::default(), focus_listeners: Vec::new(), focus_handles: Arc::new(RwLock::new(SlotMap::with_key())), default_prevented: true, mouse_position, scale_factor, bounds, bounds_observers: SubscriberSet::new(), active: false, activation_observers: SubscriberSet::new(), scene_builder: SceneBuilder::new(), dirty: true, last_blur: None, focus: None, } } } /// When constructing the element tree, we maintain a stack of key dispatch frames until we /// find the focused element. We interleave key listeners with dispatch contexts so we can use the /// contexts when matching key events against the keymap. enum KeyDispatchStackFrame { Listener { event_type: TypeId, listener: AnyKeyListener, }, Context(DispatchContext), } /// Indicates which region of the window is visible. Content falling outside of this mask will not be /// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type /// to leave room to support more complex shapes in the future. #[derive(Clone, Debug, Default, PartialEq, Eq)] #[repr(C)] pub struct ContentMask { pub bounds: Bounds

, } impl ContentMask { /// Scale the content mask's pixel units by the given scaling factor. pub fn scale(&self, factor: f32) -> ContentMask { ContentMask { bounds: self.bounds.scale(factor), } } /// Intersect the content mask with the given content mask. pub fn intersect(&self, other: &Self) -> Self { let bounds = self.bounds.intersect(&other.bounds); ContentMask { bounds } } } /// Provides access to application state in the context of a single window. Derefs /// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes /// an `AppContext` and call any `AppContext` methods. pub struct WindowContext<'a> { pub(crate) app: &'a mut AppContext, pub(crate) window: &'a mut Window, } impl<'a> WindowContext<'a> { pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self { Self { app, window } } /// Obtain a handle to the window that belongs to this context. pub fn window_handle(&self) -> AnyWindowHandle { self.window.handle } /// Mark the window as dirty, scheduling it to be redrawn on the next frame. pub fn notify(&mut self) { self.window.dirty = true; } /// Close this window. pub fn remove_window(&mut self) { self.window.removed = true; } /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus /// for elements rendered within this window. pub fn focus_handle(&mut self) -> FocusHandle { FocusHandle::new(&self.window.focus_handles) } /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`. pub fn focused(&self) -> Option { self.window .focus .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles)) } /// Move focus to the element associated with the given `FocusHandle`. pub fn focus(&mut self, handle: &FocusHandle) { if self.window.last_blur.is_none() { self.window.last_blur = Some(self.window.focus); } self.window.focus = Some(handle.id); self.app.push_effect(Effect::FocusChanged { window_handle: self.window.handle, focused: Some(handle.id), }); self.notify(); } /// Remove focus from all elements within this context's window. pub fn blur(&mut self) { if self.window.last_blur.is_none() { self.window.last_blur = Some(self.window.focus); } self.window.focus = None; self.app.push_effect(Effect::FocusChanged { window_handle: self.window.handle, focused: None, }); self.notify(); } /// Schedules the given function to be run at the end of the current effect cycle, allowing entities /// that are currently on the stack to be returned to the app. pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) { let handle = self.window.handle; self.app.defer(move |cx| { handle.update(cx, |_, cx| f(cx)).ok(); }); } pub fn subscribe( &mut self, entity: &E, mut on_event: impl FnMut(E, &Emitter::Event, &mut WindowContext<'_>) + 'static, ) -> Subscription where Emitter: EventEmitter, E: Entity, { let entity_id = entity.entity_id(); let entity = entity.downgrade(); let window_handle = self.window.handle; self.app.event_listeners.insert( entity_id, Box::new(move |event, cx| { window_handle .update(cx, |_, cx| { if let Some(handle) = E::upgrade_from(&entity) { let event = event.downcast_ref().expect("invalid event type"); on_event(handle, event, cx); true } else { false } }) .unwrap_or(false) }), ) } /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across /// await points in async code. pub fn to_async(&self) -> AsyncWindowContext { AsyncWindowContext::new(self.app.to_async(), self.window.handle) } /// Schedule the given closure to be run directly after the current frame is rendered. pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) { let handle = self.window.handle; let display_id = self.window.display_id; if !self.frame_consumers.contains_key(&display_id) { let (tx, mut rx) = mpsc::unbounded::<()>(); self.platform.set_display_link_output_callback( display_id, Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())), ); let consumer_task = self.app.spawn(|cx| async move { while rx.next().await.is_some() { cx.update(|cx| { for callback in cx .next_frame_callbacks .get_mut(&display_id) .unwrap() .drain(..) .collect::>() { callback(cx); } }) .ok(); // Flush effects, then stop the display link if no new next_frame_callbacks have been added. cx.update(|cx| { if cx.next_frame_callbacks.is_empty() { cx.platform.stop_display_link(display_id); } }) .ok(); } }); self.frame_consumers.insert(display_id, consumer_task); } if self.next_frame_callbacks.is_empty() { self.platform.start_display_link(display_id); } self.next_frame_callbacks .entry(display_id) .or_default() .push(Box::new(move |cx: &mut AppContext| { cx.update_window(handle, |_root_view, cx| callback(cx)).ok(); })); } /// Spawn the future returned by the given closure on the application thread pool. /// The closure is provided a handle to the current window and an `AsyncWindowContext` for /// use within your future. pub fn spawn(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task where R: 'static, Fut: Future + 'static, { self.app .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle))) } /// Update the global of the given type. The given closure is given simultaneous mutable /// access both to the global and the context. pub fn update_global(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R where G: 'static, { let mut global = self.app.lease_global::(); let result = f(&mut global, self); self.app.end_global_lease(global); result } /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which /// layout is being requested, along with the layout ids of any children. This method is called during /// calls to the `Element::layout` trait method and enables any element to participate in layout. pub fn request_layout( &mut self, style: &Style, children: impl IntoIterator, ) -> LayoutId { self.app.layout_id_buffer.clear(); self.app.layout_id_buffer.extend(children.into_iter()); let rem_size = self.rem_size(); self.window .layout_engine .request_layout(style, rem_size, &self.app.layout_id_buffer) } /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children, /// this variant takes a function that is invoked during layout so you can use arbitrary logic to /// determine the element's size. One place this is used internally is when measuring text. /// /// The given closure is invoked at layout time with the known dimensions and available space and /// returns a `Size`. pub fn request_measured_layout< F: Fn(Size>, Size) -> Size + Send + Sync + 'static, >( &mut self, style: Style, rem_size: Pixels, measure: F, ) -> LayoutId { self.window .layout_engine .request_measured_layout(style, rem_size, measure) } /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically /// in order to pass your element its `Bounds` automatically. pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds { let mut bounds = self .window .layout_engine .layout_bounds(layout_id) .map(Into::into); bounds.origin += self.element_offset(); bounds } fn window_bounds_changed(&mut self) { self.window.scale_factor = self.window.platform_window.scale_factor(); self.window.content_size = self.window.platform_window.content_size(); self.window.bounds = self.window.platform_window.bounds(); self.window.display_id = self.window.platform_window.display().id(); self.window.dirty = true; self.window .bounds_observers .clone() .retain(&(), |callback| callback(self)); } pub fn window_bounds(&self) -> WindowBounds { self.window.bounds } pub fn is_window_active(&self) -> bool { self.window.active } pub fn zoom_window(&self) { self.window.platform_window.zoom(); } pub fn display(&self) -> Option> { self.platform .displays() .into_iter() .find(|display| display.id() == self.window.display_id) } /// The scale factor of the display associated with the window. For example, it could /// return 2.0 for a "retina" display, indicating that each logical pixel should actually /// be rendered as two pixels on screen. pub fn scale_factor(&self) -> f32 { self.window.scale_factor } /// The size of an em for the base font of the application. Adjusting this value allows the /// UI to scale, just like zooming a web page. pub fn rem_size(&self) -> Pixels { self.window.rem_size } /// Sets the size of an em for the base font of the application. Adjusting this value allows the /// UI to scale, just like zooming a web page. pub fn set_rem_size(&mut self, rem_size: impl Into) { self.window.rem_size = rem_size.into(); } /// The line height associated with the current text style. pub fn line_height(&self) -> Pixels { let rem_size = self.rem_size(); let text_style = self.text_style(); text_style .line_height .to_pixels(text_style.font_size.into(), rem_size) } /// Call to prevent the default action of an event. Currently only used to prevent /// parent elements from becoming focused on mouse down. pub fn prevent_default(&mut self) { self.window.default_prevented = true; } /// Obtain whether default has been prevented for the event currently being dispatched. pub fn default_prevented(&self) -> bool { self.window.default_prevented } /// Register a mouse event listener on the window for the current frame. The type of event /// is determined by the first parameter of the given listener. When the next frame is rendered /// the listener will be cleared. /// /// This is a fairly low-level method, so prefer using event handlers on elements unless you have /// a specific need to register a global listener. pub fn on_mouse_event( &mut self, handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static, ) { let order = self.window.z_index_stack.clone(); self.window .mouse_listeners .entry(TypeId::of::()) .or_default() .push(( order, Box::new(move |event: &dyn Any, phase, cx| { handler(event.downcast_ref().unwrap(), phase, cx) }), )) } /// The position of the mouse relative to the window. pub fn mouse_position(&self) -> Point { self.window.mouse_position } /// Called during painting to invoke the given closure in a new stacking context. The given /// z-index is interpreted relative to the previous call to `stack`. pub fn stack(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R { self.window.z_index_stack.push(z_index); let result = f(self); self.window.z_index_stack.pop(); result } /// Paint one or more drop shadows into the scene for the current frame at the current z-index. pub fn paint_shadows( &mut self, bounds: Bounds, corner_radii: Corners, shadows: &[BoxShadow], ) { let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); let window = &mut *self.window; for shadow in shadows { let mut shadow_bounds = bounds; shadow_bounds.origin += shadow.offset; shadow_bounds.dilate(shadow.spread_radius); window.scene_builder.insert( &window.z_index_stack, Shadow { order: 0, bounds: shadow_bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), corner_radii: corner_radii.scale(scale_factor), color: shadow.color, blur_radius: shadow.blur_radius.scale(scale_factor), }, ); } } /// Paint one or more quads into the scene for the current frame at the current stacking context. /// Quads are colored rectangular regions with an optional background, border, and corner radius. pub fn paint_quad( &mut self, bounds: Bounds, corner_radii: Corners, background: impl Into, border_widths: Edges, border_color: impl Into, ) { let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); let window = &mut *self.window; window.scene_builder.insert( &window.z_index_stack, Quad { order: 0, bounds: bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), background: background.into(), border_color: border_color.into(), corner_radii: corner_radii.scale(scale_factor), border_widths: border_widths.scale(scale_factor), }, ); } /// Paint the given `Path` into the scene for the current frame at the current z-index. pub fn paint_path(&mut self, mut path: Path, color: impl Into) { let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); path.content_mask = content_mask; path.color = color.into(); let window = &mut *self.window; window .scene_builder .insert(&window.z_index_stack, path.scale(scale_factor)); } /// Paint an underline into the scene for the current frame at the current z-index. pub fn paint_underline( &mut self, origin: Point, width: Pixels, style: &UnderlineStyle, ) -> Result<()> { let scale_factor = self.scale_factor(); let height = if style.wavy { style.thickness * 3. } else { style.thickness }; let bounds = Bounds { origin, size: size(width, height), }; let content_mask = self.content_mask(); let window = &mut *self.window; window.scene_builder.insert( &window.z_index_stack, Underline { order: 0, bounds: bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), thickness: style.thickness.scale(scale_factor), color: style.color.unwrap_or_default(), wavy: style.wavy, }, ); Ok(()) } /// Paint a monochrome (non-emoji) glyph into the scene for the current frame at the current z-index. pub fn paint_glyph( &mut self, origin: Point, font_id: FontId, glyph_id: GlyphId, font_size: Pixels, color: Hsla, ) -> Result<()> { let scale_factor = self.scale_factor(); let glyph_origin = origin.scale(scale_factor); let subpixel_variant = Point { x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8, y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8, }; let params = RenderGlyphParams { font_id, glyph_id, font_size, subpixel_variant, scale_factor, is_emoji: false, }; let raster_bounds = self.text_system().raster_bounds(¶ms)?; if !raster_bounds.is_zero() { let tile = self.window .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?; Ok((size, Cow::Owned(bytes))) })?; let bounds = Bounds { origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into), size: tile.bounds.size.map(Into::into), }; let content_mask = self.content_mask().scale(scale_factor); let window = &mut *self.window; window.scene_builder.insert( &window.z_index_stack, MonochromeSprite { order: 0, bounds, content_mask, color, tile, }, ); } Ok(()) } /// Paint an emoji glyph into the scene for the current frame at the current z-index. pub fn paint_emoji( &mut self, origin: Point, font_id: FontId, glyph_id: GlyphId, font_size: Pixels, ) -> Result<()> { let scale_factor = self.scale_factor(); let glyph_origin = origin.scale(scale_factor); let params = RenderGlyphParams { font_id, glyph_id, font_size, // We don't render emojis with subpixel variants. subpixel_variant: Default::default(), scale_factor, is_emoji: true, }; let raster_bounds = self.text_system().raster_bounds(¶ms)?; if !raster_bounds.is_zero() { let tile = self.window .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?; Ok((size, Cow::Owned(bytes))) })?; let bounds = Bounds { origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into), size: tile.bounds.size.map(Into::into), }; let content_mask = self.content_mask().scale(scale_factor); let window = &mut *self.window; window.scene_builder.insert( &window.z_index_stack, PolychromeSprite { order: 0, bounds, corner_radii: Default::default(), content_mask, tile, grayscale: false, }, ); } Ok(()) } /// Paint a monochrome SVG into the scene for the current frame at the current stacking context. pub fn paint_svg( &mut self, bounds: Bounds, path: SharedString, color: Hsla, ) -> Result<()> { let scale_factor = self.scale_factor(); let bounds = bounds.scale(scale_factor); // Render the SVG at twice the size to get a higher quality result. let params = RenderSvgParams { path, size: bounds .size .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)), }; let tile = self.window .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let bytes = self.svg_renderer.render(¶ms)?; Ok((params.size, Cow::Owned(bytes))) })?; let content_mask = self.content_mask().scale(scale_factor); let window = &mut *self.window; window.scene_builder.insert( &window.z_index_stack, MonochromeSprite { order: 0, bounds, content_mask, color, tile, }, ); Ok(()) } /// Paint an image into the scene for the current frame at the current z-index. pub fn paint_image( &mut self, bounds: Bounds, corner_radii: Corners, data: Arc, grayscale: bool, ) -> Result<()> { let scale_factor = self.scale_factor(); let bounds = bounds.scale(scale_factor); let params = RenderImageParams { image_id: data.id }; let tile = self .window .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { Ok((data.size(), Cow::Borrowed(data.as_bytes()))) })?; let content_mask = self.content_mask().scale(scale_factor); let corner_radii = corner_radii.scale(scale_factor); let window = &mut *self.window; window.scene_builder.insert( &window.z_index_stack, PolychromeSprite { order: 0, bounds, content_mask, corner_radii, tile, grayscale, }, ); Ok(()) } /// Draw pixels to the display for this window based on the contents of its scene. pub(crate) fn draw(&mut self) { let root_view = self.window.root_view.take().unwrap(); self.start_frame(); self.stack(0, |cx| { let available_space = cx.window.content_size.map(Into::into); root_view.draw(available_space, cx); }); if let Some(active_drag) = self.app.active_drag.take() { self.stack(1, |cx| { let offset = cx.mouse_position() - active_drag.cursor_offset; cx.with_element_offset(Some(offset), |cx| { let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent); active_drag.view.draw(available_space, cx); cx.active_drag = Some(active_drag); }); }); } self.window.root_view = Some(root_view); let scene = self.window.scene_builder.build(); self.window.platform_window.draw(scene); self.window.dirty = false; } fn start_frame(&mut self) { self.text_system().start_frame(); let window = &mut *self.window; // Move the current frame element states to the previous frame. // The new empty element states map will be populated for any element states we // reference during the upcoming frame. mem::swap( &mut window.element_states, &mut window.prev_frame_element_states, ); window.element_states.clear(); // Make the current key matchers the previous, and then clear the current. // An empty key matcher map will be created for every identified element in the // upcoming frame. mem::swap( &mut window.key_matchers, &mut window.prev_frame_key_matchers, ); window.key_matchers.clear(); // Clear mouse event listeners, because elements add new element listeners // when the upcoming frame is painted. window.mouse_listeners.values_mut().for_each(Vec::clear); // Clear focus state, because we determine what is focused when the new elements // in the upcoming frame are initialized. window.focus_listeners.clear(); window.key_dispatch_stack.clear(); window.focus_parents_by_child.clear(); window.freeze_key_dispatch_stack = false; } /// Dispatch a mouse or keyboard event on the window. fn dispatch_event(&mut self, event: InputEvent) -> bool { let event = match event { // Track the mouse position with our own state, since accessing the platform // API for the mouse position can only occur on the main thread. InputEvent::MouseMove(mouse_move) => { self.window.mouse_position = mouse_move.position; InputEvent::MouseMove(mouse_move) } // Translate dragging and dropping of external files from the operating system // to internal drag and drop events. InputEvent::FileDrop(file_drop) => match file_drop { FileDropEvent::Entered { position, files } => { self.window.mouse_position = position; if self.active_drag.is_none() { self.active_drag = Some(AnyDrag { view: self.build_view(|_| files).into(), cursor_offset: position, }); } InputEvent::MouseDown(MouseDownEvent { position, button: MouseButton::Left, click_count: 1, modifiers: Modifiers::default(), }) } FileDropEvent::Pending { position } => { self.window.mouse_position = position; InputEvent::MouseMove(MouseMoveEvent { position, pressed_button: Some(MouseButton::Left), modifiers: Modifiers::default(), }) } FileDropEvent::Submit { position } => { self.window.mouse_position = position; InputEvent::MouseUp(MouseUpEvent { button: MouseButton::Left, position, modifiers: Modifiers::default(), click_count: 1, }) } FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent { button: MouseButton::Left, position: Point::default(), modifiers: Modifiers::default(), click_count: 1, }), }, _ => event, }; if let Some(any_mouse_event) = event.mouse_event() { // Handlers may set this to false by calling `stop_propagation` self.app.propagate_event = true; self.window.default_prevented = false; if let Some(mut handlers) = self .window .mouse_listeners .remove(&any_mouse_event.type_id()) { // Because handlers may add other handlers, we sort every time. handlers.sort_by(|(a, _), (b, _)| a.cmp(b)); // Capture phase, events bubble from back to front. Handlers for this phase are used for // special purposes, such as detecting events outside of a given Bounds. for (_, handler) in &handlers { handler(any_mouse_event, DispatchPhase::Capture, self); if !self.app.propagate_event { break; } } // Bubble phase, where most normal handlers do their work. if self.app.propagate_event { for (_, handler) in handlers.iter().rev() { handler(any_mouse_event, DispatchPhase::Bubble, self); if !self.app.propagate_event { break; } } } if self.app.propagate_event && any_mouse_event.downcast_ref::().is_some() { self.active_drag = None; } // Just in case any handlers added new handlers, which is weird, but possible. handlers.extend( self.window .mouse_listeners .get_mut(&any_mouse_event.type_id()) .into_iter() .flat_map(|handlers| handlers.drain(..)), ); self.window .mouse_listeners .insert(any_mouse_event.type_id(), handlers); } } else if let Some(any_key_event) = event.keyboard_event() { let key_dispatch_stack = mem::take(&mut self.window.key_dispatch_stack); let key_event_type = any_key_event.type_id(); let mut context_stack = SmallVec::<[&DispatchContext; 16]>::new(); for (ix, frame) in key_dispatch_stack.iter().enumerate() { match frame { KeyDispatchStackFrame::Listener { event_type, listener, } => { if key_event_type == *event_type { if let Some(action) = listener( any_key_event, &context_stack, DispatchPhase::Capture, self, ) { self.dispatch_action(action, &key_dispatch_stack[..ix]); } if !self.app.propagate_event { break; } } } KeyDispatchStackFrame::Context(context) => { context_stack.push(&context); } } } if self.app.propagate_event { for (ix, frame) in key_dispatch_stack.iter().enumerate().rev() { match frame { KeyDispatchStackFrame::Listener { event_type, listener, } => { if key_event_type == *event_type { if let Some(action) = listener( any_key_event, &context_stack, DispatchPhase::Bubble, self, ) { self.dispatch_action(action, &key_dispatch_stack[..ix]); } if !self.app.propagate_event { break; } } } KeyDispatchStackFrame::Context(_) => { context_stack.pop(); } } } } drop(context_stack); self.window.key_dispatch_stack = key_dispatch_stack; } true } /// Attempt to map a keystroke to an action based on the keymap. pub fn match_keystroke( &mut self, element_id: &GlobalElementId, keystroke: &Keystroke, context_stack: &[&DispatchContext], ) -> KeyMatch { let key_match = self .window .key_matchers .get_mut(element_id) .unwrap() .match_keystroke(keystroke, context_stack); if key_match.is_some() { for matcher in self.window.key_matchers.values_mut() { matcher.clear_pending(); } } key_match } /// Register the given handler to be invoked whenever the global of the given type /// is updated. pub fn observe_global( &mut self, f: impl Fn(&mut WindowContext<'_>) + 'static, ) -> Subscription { let window_handle = self.window.handle; self.global_observers.insert( TypeId::of::(), Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()), ) } pub fn activate_window(&self) { self.window.platform_window.activate(); } pub fn prompt( &self, level: PromptLevel, msg: &str, answers: &[&str], ) -> oneshot::Receiver { self.window.platform_window.prompt(level, msg, answers) } fn dispatch_action( &mut self, action: Box, dispatch_stack: &[KeyDispatchStackFrame], ) { let action_type = action.as_any().type_id(); if let Some(mut global_listeners) = self.app.global_action_listeners.remove(&action_type) { for listener in &global_listeners { listener(action.as_ref(), DispatchPhase::Capture, self); if !self.app.propagate_event { break; } } global_listeners.extend( self.global_action_listeners .remove(&action_type) .unwrap_or_default(), ); self.global_action_listeners .insert(action_type, global_listeners); } if self.app.propagate_event { for stack_frame in dispatch_stack { if let KeyDispatchStackFrame::Listener { event_type, listener, } = stack_frame { if action_type == *event_type { listener(action.as_any(), &[], DispatchPhase::Capture, self); if !self.app.propagate_event { break; } } } } } if self.app.propagate_event { for stack_frame in dispatch_stack.iter().rev() { if let KeyDispatchStackFrame::Listener { event_type, listener, } = stack_frame { if action_type == *event_type { listener(action.as_any(), &[], DispatchPhase::Bubble, self); if !self.app.propagate_event { break; } } } } } if self.app.propagate_event { if let Some(mut global_listeners) = self.app.global_action_listeners.remove(&action_type) { for listener in global_listeners.iter().rev() { listener(action.as_ref(), DispatchPhase::Bubble, self); if !self.app.propagate_event { break; } } global_listeners.extend( self.global_action_listeners .remove(&action_type) .unwrap_or_default(), ); self.global_action_listeners .insert(action_type, global_listeners); } } } } impl Context for WindowContext<'_> { type Result = T; fn build_model( &mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T, ) -> Model where T: 'static, { let slot = self.app.entities.reserve(); let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade())); self.entities.insert(slot, model) } fn update_model( &mut self, model: &Model, update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R, ) -> R { let mut entity = self.entities.lease(model); let result = update( &mut *entity, &mut ModelContext::new(&mut *self.app, model.downgrade()), ); self.entities.end_lease(entity); result } fn update_window(&mut self, window: AnyWindowHandle, update: F) -> Result where F: FnOnce(AnyView, &mut WindowContext<'_>) -> T, { if window == self.window.handle { let root_view = self.window.root_view.clone().unwrap(); Ok(update(root_view, self)) } else { window.update(self.app, update) } } } impl VisualContext for WindowContext<'_> { fn build_view( &mut self, build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V, ) -> Self::Result> where V: 'static, { let slot = self.app.entities.reserve(); let view = View { model: slot.clone(), }; let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view); let entity = build_view_state(&mut cx); self.entities.insert(slot, entity); view } /// Update the given view. Prefer calling `View::update` instead, which calls this method. fn update_view( &mut self, view: &View, update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R, ) -> Self::Result { let mut lease = self.app.entities.lease(&view.model); let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view); let result = update(&mut *lease, &mut cx); cx.app.entities.end_lease(lease); result } fn replace_root_view( &mut self, build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V, ) -> Self::Result> where V: Render, { let slot = self.app.entities.reserve(); let view = View { model: slot.clone(), }; let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view); let entity = build_view(&mut cx); self.entities.insert(slot, entity); self.window.root_view = Some(view.clone().into()); view } } impl<'a> std::ops::Deref for WindowContext<'a> { type Target = AppContext; fn deref(&self) -> &Self::Target { &self.app } } impl<'a> std::ops::DerefMut for WindowContext<'a> { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.app } } impl<'a> Borrow for WindowContext<'a> { fn borrow(&self) -> &AppContext { &self.app } } impl<'a> BorrowMut for WindowContext<'a> { fn borrow_mut(&mut self) -> &mut AppContext { &mut self.app } } pub trait BorrowWindow: BorrowMut + BorrowMut { fn app_mut(&mut self) -> &mut AppContext { self.borrow_mut() } fn window(&self) -> &Window { self.borrow() } fn window_mut(&mut self) -> &mut Window { self.borrow_mut() } /// Pushes the given element id onto the global stack and invokes the given closure /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is /// used to associate state with identified elements across separate frames. fn with_element_id( &mut self, id: impl Into, f: impl FnOnce(GlobalElementId, &mut Self) -> R, ) -> R { let keymap = self.app_mut().keymap.clone(); let window = self.window_mut(); window.element_id_stack.push(id.into()); let global_id = window.element_id_stack.clone(); if window.key_matchers.get(&global_id).is_none() { window.key_matchers.insert( global_id.clone(), window .prev_frame_key_matchers .remove(&global_id) .unwrap_or_else(|| KeyMatcher::new(keymap)), ); } let result = f(global_id, self); let window: &mut Window = self.borrow_mut(); window.element_id_stack.pop(); result } /// Invoke the given function with the given content mask after intersecting it /// with the current mask. fn with_content_mask( &mut self, mask: ContentMask, f: impl FnOnce(&mut Self) -> R, ) -> R { let mask = mask.intersect(&self.content_mask()); self.window_mut().content_mask_stack.push(mask); let result = f(self); self.window_mut().content_mask_stack.pop(); result } /// Update the global element offset based on the given offset. This is used to implement /// scrolling and position drag handles. fn with_element_offset( &mut self, offset: Option>, f: impl FnOnce(&mut Self) -> R, ) -> R { let Some(offset) = offset else { return f(self); }; let offset = self.element_offset() + offset; self.window_mut().element_offset_stack.push(offset); let result = f(self); self.window_mut().element_offset_stack.pop(); result } /// Obtain the current element offset. fn element_offset(&self) -> Point { self.window() .element_offset_stack .last() .copied() .unwrap_or_default() } /// Update or intialize state for an element with the given id that lives across multiple /// frames. If an element with this id existed in the previous frame, its state will be passed /// to the given closure. The state returned by the closure will be stored so it can be referenced /// when drawing the next frame. fn with_element_state( &mut self, id: ElementId, f: impl FnOnce(Option, &mut Self) -> (R, S), ) -> R where S: 'static, { self.with_element_id(id, |global_id, cx| { if let Some(any) = cx .window_mut() .element_states .remove(&global_id) .or_else(|| cx.window_mut().prev_frame_element_states.remove(&global_id)) { // Using the extra inner option to avoid needing to reallocate a new box. let mut state_box = any .downcast::>() .expect("invalid element state type for id"); let state = state_box .take() .expect("element state is already on the stack"); let (result, state) = f(Some(state), cx); state_box.replace(state); cx.window_mut().element_states.insert(global_id, state_box); result } else { let (result, state) = f(None, cx); cx.window_mut() .element_states .insert(global_id, Box::new(Some(state))); result } }) } /// Like `with_element_state`, but for situations where the element_id is optional. If the /// id is `None`, no state will be retrieved or stored. fn with_optional_element_state( &mut self, element_id: Option, f: impl FnOnce(Option, &mut Self) -> (R, S), ) -> R where S: 'static, { if let Some(element_id) = element_id { self.with_element_state(element_id, f) } else { f(None, self).0 } } /// Obtain the current content mask. fn content_mask(&self) -> ContentMask { self.window() .content_mask_stack .last() .cloned() .unwrap_or_else(|| ContentMask { bounds: Bounds { origin: Point::default(), size: self.window().content_size, }, }) } /// The size of an em for the base font of the application. Adjusting this value allows the /// UI to scale, just like zooming a web page. fn rem_size(&self) -> Pixels { self.window().rem_size } } impl Borrow for WindowContext<'_> { fn borrow(&self) -> &Window { &self.window } } impl BorrowMut for WindowContext<'_> { fn borrow_mut(&mut self) -> &mut Window { &mut self.window } } impl BorrowWindow for T where T: BorrowMut + BorrowMut {} pub struct ViewContext<'a, V> { window_cx: WindowContext<'a>, view: &'a View, } impl Borrow for ViewContext<'_, V> { fn borrow(&self) -> &AppContext { &*self.window_cx.app } } impl BorrowMut for ViewContext<'_, V> { fn borrow_mut(&mut self) -> &mut AppContext { &mut *self.window_cx.app } } impl Borrow for ViewContext<'_, V> { fn borrow(&self) -> &Window { &*self.window_cx.window } } impl BorrowMut for ViewContext<'_, V> { fn borrow_mut(&mut self) -> &mut Window { &mut *self.window_cx.window } } impl<'a, V: 'static> ViewContext<'a, V> { pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View) -> Self { Self { window_cx: WindowContext::new(app, window), view, } } pub fn view(&self) -> View { self.view.clone() } pub fn model(&self) -> Model { self.view.model.clone() } pub fn stack(&mut self, order: u32, f: impl FnOnce(&mut Self) -> R) -> R { self.window.z_index_stack.push(order); let result = f(self); self.window.z_index_stack.pop(); result } pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext) + 'static) where V: 'static, { let view = self.view(); self.window_cx.on_next_frame(move |cx| view.update(cx, f)); } /// Schedules the given function to be run at the end of the current effect cycle, allowing entities /// that are currently on the stack to be returned to the app. pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext) + 'static) { let view = self.view().downgrade(); self.window_cx.defer(move |cx| { view.update(cx, f).ok(); }); } pub fn observe( &mut self, entity: &E, mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static, ) -> Subscription where V2: 'static, V: 'static, E: Entity, { let view = self.view().downgrade(); let entity_id = entity.entity_id(); let entity = entity.downgrade(); let window_handle = self.window.handle; self.app.observers.insert( entity_id, Box::new(move |cx| { window_handle .update(cx, |_, cx| { if let Some(handle) = E::upgrade_from(&entity) { view.update(cx, |this, cx| on_notify(this, handle, cx)) .is_ok() } else { false } }) .unwrap_or(false) }), ) } pub fn subscribe( &mut self, entity: &E, mut on_event: impl FnMut(&mut V, E, &V2::Event, &mut ViewContext<'_, V>) + 'static, ) -> Subscription where V2: EventEmitter, E: Entity, { let view = self.view().downgrade(); let entity_id = entity.entity_id(); let handle = entity.downgrade(); let window_handle = self.window.handle; self.app.event_listeners.insert( entity_id, Box::new(move |event, cx| { window_handle .update(cx, |_, cx| { if let Some(handle) = E::upgrade_from(&handle) { let event = event.downcast_ref().expect("invalid event type"); view.update(cx, |this, cx| on_event(this, handle, event, cx)) .is_ok() } else { false } }) .unwrap_or(false) }), ) } pub fn on_release( &mut self, on_release: impl FnOnce(&mut V, &mut WindowContext) + 'static, ) -> Subscription { let window_handle = self.window.handle; self.app.release_listeners.insert( self.view.model.entity_id, Box::new(move |this, cx| { let this = this.downcast_mut().expect("invalid entity type"); let _ = window_handle.update(cx, |_, cx| on_release(this, cx)); }), ) } pub fn observe_release( &mut self, entity: &E, mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static, ) -> Subscription where V: 'static, V2: 'static, E: Entity, { let view = self.view().downgrade(); let entity_id = entity.entity_id(); let window_handle = self.window.handle; self.app.release_listeners.insert( entity_id, Box::new(move |entity, cx| { let entity = entity.downcast_mut().expect("invalid entity type"); let _ = window_handle.update(cx, |_, cx| { view.update(cx, |this, cx| on_release(this, entity, cx)) }); }), ) } pub fn notify(&mut self) { self.window_cx.notify(); self.window_cx.app.push_effect(Effect::Notify { emitter: self.view.model.entity_id, }); } pub fn observe_window_bounds( &mut self, mut callback: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); self.window.bounds_observers.insert( (), Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()), ) } pub fn observe_window_activation( &mut self, mut callback: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); self.window.activation_observers.insert( (), Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()), ) } pub fn on_focus_changed( &mut self, listener: impl Fn(&mut V, &FocusEvent, &mut ViewContext) + 'static, ) { let handle = self.view().downgrade(); self.window.focus_listeners.push(Box::new(move |event, cx| { handle .update(cx, |view, cx| listener(view, event, cx)) .log_err(); })); } pub fn with_key_listeners( &mut self, key_listeners: impl IntoIterator)>, f: impl FnOnce(&mut Self) -> R, ) -> R { let old_stack_len = self.window.key_dispatch_stack.len(); if !self.window.freeze_key_dispatch_stack { for (event_type, listener) in key_listeners { let handle = self.view().downgrade(); let listener = Box::new( move |event: &dyn Any, context_stack: &[&DispatchContext], phase: DispatchPhase, cx: &mut WindowContext<'_>| { handle .update(cx, |view, cx| { listener(view, event, context_stack, phase, cx) }) .log_err() .flatten() }, ); self.window .key_dispatch_stack .push(KeyDispatchStackFrame::Listener { event_type, listener, }); } } let result = f(self); if !self.window.freeze_key_dispatch_stack { self.window.key_dispatch_stack.truncate(old_stack_len); } result } pub fn with_key_dispatch_context( &mut self, context: DispatchContext, f: impl FnOnce(&mut Self) -> R, ) -> R { if context.is_empty() { return f(self); } if !self.window.freeze_key_dispatch_stack { self.window .key_dispatch_stack .push(KeyDispatchStackFrame::Context(context)); } let result = f(self); if !self.window.freeze_key_dispatch_stack { self.window.key_dispatch_stack.pop(); } result } pub fn with_focus( &mut self, focus_handle: FocusHandle, f: impl FnOnce(&mut Self) -> R, ) -> R { if let Some(parent_focus_id) = self.window.focus_stack.last().copied() { self.window .focus_parents_by_child .insert(focus_handle.id, parent_focus_id); } self.window.focus_stack.push(focus_handle.id); if Some(focus_handle.id) == self.window.focus { self.window.freeze_key_dispatch_stack = true; } let result = f(self); self.window.focus_stack.pop(); result } pub fn spawn( &mut self, f: impl FnOnce(WeakView, AsyncWindowContext) -> Fut, ) -> Task where R: 'static, Fut: Future + 'static, { let view = self.view().downgrade(); self.window_cx.spawn(|cx| f(view, cx)) } pub fn update_global(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R where G: 'static, { let mut global = self.app.lease_global::(); let result = f(&mut global, self); self.app.end_global_lease(global); result } pub fn observe_global( &mut self, f: impl Fn(&mut V, &mut ViewContext<'_, V>) + 'static, ) -> Subscription { let window_handle = self.window.handle; let view = self.view().downgrade(); self.global_observers.insert( TypeId::of::(), Box::new(move |cx| { window_handle .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok()) .unwrap_or(false) }), ) } pub fn on_mouse_event( &mut self, handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext) + 'static, ) { let handle = self.view(); self.window_cx.on_mouse_event(move |event, phase, cx| { handle.update(cx, |view, cx| { handler(view, event, phase, cx); }) }); } } impl ViewContext<'_, V> where V: EventEmitter, V::Event: 'static, { pub fn emit(&mut self, event: V::Event) { let emitter = self.view.model.entity_id; self.app.push_effect(Effect::Emit { emitter, event: Box::new(event), }); } } impl Context for ViewContext<'_, V> { type Result = U; fn build_model( &mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T, ) -> Model { self.window_cx.build_model(build_model) } fn update_model( &mut self, model: &Model, update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R, ) -> R { self.window_cx.update_model(model, update) } fn update_window(&mut self, window: AnyWindowHandle, update: F) -> Result where F: FnOnce(AnyView, &mut WindowContext<'_>) -> T, { self.window_cx.update_window(window, update) } } impl VisualContext for ViewContext<'_, V> { fn build_view( &mut self, build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W, ) -> Self::Result> { self.window_cx.build_view(build_view) } fn update_view( &mut self, view: &View, update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R, ) -> Self::Result { self.window_cx.update_view(view, update) } fn replace_root_view( &mut self, build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W, ) -> Self::Result> where W: Render, { self.window_cx.replace_root_view(build_view) } } impl<'a, V> std::ops::Deref for ViewContext<'a, V> { type Target = WindowContext<'a>; fn deref(&self) -> &Self::Target { &self.window_cx } } impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.window_cx } } // #[derive(Clone, Copy, Eq, PartialEq, Hash)] slotmap::new_key_type! { pub struct WindowId; } impl WindowId { pub fn as_u64(&self) -> u64 { self.0.as_ffi() } } #[derive(Deref, DerefMut)] pub struct WindowHandle { #[deref] #[deref_mut] pub(crate) any_handle: AnyWindowHandle, state_type: PhantomData, } impl WindowHandle { pub fn new(id: WindowId) -> Self { WindowHandle { any_handle: AnyWindowHandle { id, state_type: TypeId::of::(), }, state_type: PhantomData, } } pub fn update( self, cx: &mut C, update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R, ) -> Result where C: Context, { cx.update_window(self.any_handle, |root_view, cx| { let view = root_view .downcast::() .map_err(|_| anyhow!("the type of the window's root view has changed"))?; Ok(cx.update_view(&view, update)) })? } } impl Copy for WindowHandle {} impl Clone for WindowHandle { fn clone(&self) -> Self { WindowHandle { any_handle: self.any_handle, state_type: PhantomData, } } } impl PartialEq for WindowHandle { fn eq(&self, other: &Self) -> bool { self.any_handle == other.any_handle } } impl Eq for WindowHandle {} impl Hash for WindowHandle { fn hash(&self, state: &mut H) { self.any_handle.hash(state); } } impl Into for WindowHandle { fn into(self) -> AnyWindowHandle { self.any_handle } } #[derive(Copy, Clone, PartialEq, Eq, Hash)] pub struct AnyWindowHandle { pub(crate) id: WindowId, state_type: TypeId, } impl AnyWindowHandle { pub fn window_id(&self) -> WindowId { self.id } pub fn downcast(&self) -> Option> { if TypeId::of::() == self.state_type { Some(WindowHandle { any_handle: *self, state_type: PhantomData, }) } else { None } } pub fn update( self, cx: &mut C, update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R, ) -> Result where C: Context, { cx.update_window(self, update) } } #[cfg(any(test, feature = "test-support"))] impl From> for StackingOrder { fn from(small_vec: SmallVec<[u32; 16]>) -> Self { StackingOrder(small_vec) } } #[derive(Clone, Debug, Eq, PartialEq, Hash)] pub enum ElementId { View(EntityId), Number(usize), Name(SharedString), FocusHandle(FocusId), } impl From for ElementId { fn from(id: EntityId) -> Self { ElementId::View(id) } } impl From for ElementId { fn from(id: usize) -> Self { ElementId::Number(id) } } impl From for ElementId { fn from(id: i32) -> Self { Self::Number(id as usize) } } impl From for ElementId { fn from(name: SharedString) -> Self { ElementId::Name(name) } } impl From<&'static str> for ElementId { fn from(name: &'static str) -> Self { ElementId::Name(name.into()) } } impl<'a> From<&'a FocusHandle> for ElementId { fn from(handle: &'a FocusHandle) -> Self { ElementId::FocusHandle(handle.id) } }