zed/crates/ai2/src/embedding.rs
2023-11-02 10:55:02 -07:00

123 lines
3.6 KiB
Rust

use std::time::Instant;
use anyhow::Result;
use async_trait::async_trait;
use ordered_float::OrderedFloat;
use rusqlite::types::{FromSql, FromSqlResult, ToSqlOutput, ValueRef};
use rusqlite::ToSql;
use crate::auth::CredentialProvider;
use crate::models::LanguageModel;
#[derive(Debug, PartialEq, Clone)]
pub struct Embedding(pub Vec<f32>);
// This is needed for semantic index functionality
// Unfortunately it has to live wherever the "Embedding" struct is created.
// Keeping this in here though, introduces a 'rusqlite' dependency into AI
// which is less than ideal
impl FromSql for Embedding {
fn column_result(value: ValueRef) -> FromSqlResult<Self> {
let bytes = value.as_blob()?;
let embedding: Result<Vec<f32>, Box<bincode::ErrorKind>> = bincode::deserialize(bytes);
if embedding.is_err() {
return Err(rusqlite::types::FromSqlError::Other(embedding.unwrap_err()));
}
Ok(Embedding(embedding.unwrap()))
}
}
impl ToSql for Embedding {
fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
let bytes = bincode::serialize(&self.0)
.map_err(|err| rusqlite::Error::ToSqlConversionFailure(Box::new(err)))?;
Ok(ToSqlOutput::Owned(rusqlite::types::Value::Blob(bytes)))
}
}
impl From<Vec<f32>> for Embedding {
fn from(value: Vec<f32>) -> Self {
Embedding(value)
}
}
impl Embedding {
pub fn similarity(&self, other: &Self) -> OrderedFloat<f32> {
let len = self.0.len();
assert_eq!(len, other.0.len());
let mut result = 0.0;
unsafe {
matrixmultiply::sgemm(
1,
len,
1,
1.0,
self.0.as_ptr(),
len as isize,
1,
other.0.as_ptr(),
1,
len as isize,
0.0,
&mut result as *mut f32,
1,
1,
);
}
OrderedFloat(result)
}
}
#[async_trait]
pub trait EmbeddingProvider: CredentialProvider {
fn base_model(&self) -> Box<dyn LanguageModel>;
async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Embedding>>;
fn max_tokens_per_batch(&self) -> usize;
fn rate_limit_expiration(&self) -> Option<Instant>;
}
#[cfg(test)]
mod tests {
use super::*;
use rand::prelude::*;
#[gpui::test]
fn test_similarity(mut rng: StdRng) {
assert_eq!(
Embedding::from(vec![1., 0., 0., 0., 0.])
.similarity(&Embedding::from(vec![0., 1., 0., 0., 0.])),
0.
);
assert_eq!(
Embedding::from(vec![2., 0., 0., 0., 0.])
.similarity(&Embedding::from(vec![3., 1., 0., 0., 0.])),
6.
);
for _ in 0..100 {
let size = 1536;
let mut a = vec![0.; size];
let mut b = vec![0.; size];
for (a, b) in a.iter_mut().zip(b.iter_mut()) {
*a = rng.gen();
*b = rng.gen();
}
let a = Embedding::from(a);
let b = Embedding::from(b);
assert_eq!(
round_to_decimals(a.similarity(&b), 1),
round_to_decimals(reference_dot(&a.0, &b.0), 1)
);
}
fn round_to_decimals(n: OrderedFloat<f32>, decimal_places: i32) -> f32 {
let factor = (10.0 as f32).powi(decimal_places);
(n * factor).round() / factor
}
fn reference_dot(a: &[f32], b: &[f32]) -> OrderedFloat<f32> {
OrderedFloat(a.iter().zip(b.iter()).map(|(a, b)| a * b).sum())
}
}
}