mirror of
https://github.com/zed-industries/zed.git
synced 2025-01-15 06:40:17 +00:00
344e5e1cf2
Fixes multiple issues that prevented window bounds restoration to not work on Wayland. Note: Since the display uuid depends on the `wl_output.name` field, this only works properly on KDE 5.26+ or Gnome 44+ ([kwin commit](330a02d862
), [mutter](7e838b1115
)). Release Notes: - N/A
3037 lines
89 KiB
Rust
3037 lines
89 KiB
Rust
//! The GPUI geometry module is a collection of types and traits that
|
||
//! can be used to describe common units, concepts, and the relationships
|
||
//! between them.
|
||
|
||
use core::fmt::Debug;
|
||
use derive_more::{Add, AddAssign, Div, DivAssign, Mul, Neg, Sub, SubAssign};
|
||
use refineable::Refineable;
|
||
use serde_derive::{Deserialize, Serialize};
|
||
use std::{
|
||
cmp::{self, PartialOrd},
|
||
fmt,
|
||
hash::Hash,
|
||
ops::{Add, Div, Mul, MulAssign, Sub},
|
||
};
|
||
|
||
use crate::{AppContext, DisplayId};
|
||
|
||
/// An axis along which a measurement can be made.
|
||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||
pub enum Axis {
|
||
/// The y axis, or up and down
|
||
Vertical,
|
||
/// The x axis, or left and right
|
||
Horizontal,
|
||
}
|
||
|
||
impl Axis {
|
||
/// Swap this axis to the opposite axis.
|
||
pub fn invert(self) -> Self {
|
||
match self {
|
||
Axis::Vertical => Axis::Horizontal,
|
||
Axis::Horizontal => Axis::Vertical,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// A trait for accessing the given unit along a certain axis.
|
||
pub trait Along {
|
||
/// The unit associated with this type
|
||
type Unit;
|
||
|
||
/// Returns the unit along the given axis.
|
||
fn along(&self, axis: Axis) -> Self::Unit;
|
||
|
||
/// Applies the given function to the unit along the given axis and returns a new value.
|
||
fn apply_along(&self, axis: Axis, f: impl FnOnce(Self::Unit) -> Self::Unit) -> Self;
|
||
}
|
||
|
||
/// Describes a location in a 2D cartesian coordinate space.
|
||
///
|
||
/// It holds two public fields, `x` and `y`, which represent the coordinates in the space.
|
||
/// The type `T` for the coordinates can be any type that implements `Default`, `Clone`, and `Debug`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Point;
|
||
/// let point = Point { x: 10, y: 20 };
|
||
/// println!("{:?}", point); // Outputs: Point { x: 10, y: 20 }
|
||
/// ```
|
||
#[derive(Refineable, Default, Add, AddAssign, Sub, SubAssign, Copy, Debug, PartialEq, Eq, Hash)]
|
||
#[refineable(Debug)]
|
||
#[repr(C)]
|
||
pub struct Point<T: Default + Clone + Debug> {
|
||
/// The x coordinate of the point.
|
||
pub x: T,
|
||
/// The y coordinate of the point.
|
||
pub y: T,
|
||
}
|
||
|
||
/// Constructs a new `Point<T>` with the given x and y coordinates.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `x` - The x coordinate of the point.
|
||
/// * `y` - The y coordinate of the point.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a `Point<T>` with the specified coordinates.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Point;
|
||
/// let p = point(10, 20);
|
||
/// assert_eq!(p.x, 10);
|
||
/// assert_eq!(p.y, 20);
|
||
/// ```
|
||
pub const fn point<T: Clone + Debug + Default>(x: T, y: T) -> Point<T> {
|
||
Point { x, y }
|
||
}
|
||
|
||
impl<T: Clone + Debug + Default> Point<T> {
|
||
/// Creates a new `Point` with the specified `x` and `y` coordinates.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `x` - The horizontal coordinate of the point.
|
||
/// * `y` - The vertical coordinate of the point.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let p = Point::new(10, 20);
|
||
/// assert_eq!(p.x, 10);
|
||
/// assert_eq!(p.y, 20);
|
||
/// ```
|
||
pub const fn new(x: T, y: T) -> Self {
|
||
Self { x, y }
|
||
}
|
||
|
||
/// Transforms the point to a `Point<U>` by applying the given function to both coordinates.
|
||
///
|
||
/// This method allows for converting a `Point<T>` to a `Point<U>` by specifying a closure
|
||
/// that defines how to convert between the two types. The closure is applied to both the `x`
|
||
/// and `y` coordinates, resulting in a new point of the desired type.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Point;
|
||
/// let p = Point { x: 3, y: 4 };
|
||
/// let p_float = p.map(|coord| coord as f32);
|
||
/// assert_eq!(p_float, Point { x: 3.0, y: 4.0 });
|
||
/// ```
|
||
pub fn map<U: Clone + Default + Debug>(&self, f: impl Fn(T) -> U) -> Point<U> {
|
||
Point {
|
||
x: f(self.x.clone()),
|
||
y: f(self.y.clone()),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T: Clone + Debug + Default> Along for Point<T> {
|
||
type Unit = T;
|
||
|
||
fn along(&self, axis: Axis) -> T {
|
||
match axis {
|
||
Axis::Horizontal => self.x.clone(),
|
||
Axis::Vertical => self.y.clone(),
|
||
}
|
||
}
|
||
|
||
fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Point<T> {
|
||
match axis {
|
||
Axis::Horizontal => Point {
|
||
x: f(self.x.clone()),
|
||
y: self.y.clone(),
|
||
},
|
||
Axis::Vertical => Point {
|
||
x: self.x.clone(),
|
||
y: f(self.y.clone()),
|
||
},
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T: Clone + Debug + Default + Negate> Negate for Point<T> {
|
||
fn negate(self) -> Self {
|
||
self.map(Negate::negate)
|
||
}
|
||
}
|
||
|
||
impl Point<Pixels> {
|
||
/// Scales the point by a given factor, which is typically derived from the resolution
|
||
/// of a target display to ensure proper sizing of UI elements.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `factor` - The scaling factor to apply to both the x and y coordinates.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Point, Pixels, ScaledPixels};
|
||
/// let p = Point { x: Pixels(10.0), y: Pixels(20.0) };
|
||
/// let scaled_p = p.scale(1.5);
|
||
/// assert_eq!(scaled_p, Point { x: ScaledPixels(15.0), y: ScaledPixels(30.0) });
|
||
/// ```
|
||
pub fn scale(&self, factor: f32) -> Point<ScaledPixels> {
|
||
Point {
|
||
x: self.x.scale(factor),
|
||
y: self.y.scale(factor),
|
||
}
|
||
}
|
||
|
||
/// Calculates the Euclidean distance from the origin (0, 0) to this point.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Point;
|
||
/// # use zed::Pixels;
|
||
/// let p = Point { x: Pixels(3.0), y: Pixels(4.0) };
|
||
/// assert_eq!(p.magnitude(), 5.0);
|
||
/// ```
|
||
pub fn magnitude(&self) -> f64 {
|
||
((self.x.0.powi(2) + self.y.0.powi(2)) as f64).sqrt()
|
||
}
|
||
}
|
||
|
||
impl<T, Rhs> Mul<Rhs> for Point<T>
|
||
where
|
||
T: Mul<Rhs, Output = T> + Clone + Default + Debug,
|
||
Rhs: Clone + Debug,
|
||
{
|
||
type Output = Point<T>;
|
||
|
||
fn mul(self, rhs: Rhs) -> Self::Output {
|
||
Point {
|
||
x: self.x * rhs.clone(),
|
||
y: self.y * rhs,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> MulAssign<S> for Point<T>
|
||
where
|
||
T: Clone + Mul<S, Output = T> + Default + Debug,
|
||
S: Clone,
|
||
{
|
||
fn mul_assign(&mut self, rhs: S) {
|
||
self.x = self.x.clone() * rhs.clone();
|
||
self.y = self.y.clone() * rhs;
|
||
}
|
||
}
|
||
|
||
impl<T, S> Div<S> for Point<T>
|
||
where
|
||
T: Div<S, Output = T> + Clone + Default + Debug,
|
||
S: Clone,
|
||
{
|
||
type Output = Self;
|
||
|
||
fn div(self, rhs: S) -> Self::Output {
|
||
Self {
|
||
x: self.x / rhs.clone(),
|
||
y: self.y / rhs,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Point<T>
|
||
where
|
||
T: PartialOrd + Clone + Default + Debug,
|
||
{
|
||
/// Returns a new point with the maximum values of each dimension from `self` and `other`.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `other` - A reference to another `Point` to compare with `self`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Point;
|
||
/// let p1 = Point { x: 3, y: 7 };
|
||
/// let p2 = Point { x: 5, y: 2 };
|
||
/// let max_point = p1.max(&p2);
|
||
/// assert_eq!(max_point, Point { x: 5, y: 7 });
|
||
/// ```
|
||
pub fn max(&self, other: &Self) -> Self {
|
||
Point {
|
||
x: if self.x > other.x {
|
||
self.x.clone()
|
||
} else {
|
||
other.x.clone()
|
||
},
|
||
y: if self.y > other.y {
|
||
self.y.clone()
|
||
} else {
|
||
other.y.clone()
|
||
},
|
||
}
|
||
}
|
||
|
||
/// Returns a new point with the minimum values of each dimension from `self` and `other`.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `other` - A reference to another `Point` to compare with `self`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Point;
|
||
/// let p1 = Point { x: 3, y: 7 };
|
||
/// let p2 = Point { x: 5, y: 2 };
|
||
/// let min_point = p1.min(&p2);
|
||
/// assert_eq!(min_point, Point { x: 3, y: 2 });
|
||
/// ```
|
||
pub fn min(&self, other: &Self) -> Self {
|
||
Point {
|
||
x: if self.x <= other.x {
|
||
self.x.clone()
|
||
} else {
|
||
other.x.clone()
|
||
},
|
||
y: if self.y <= other.y {
|
||
self.y.clone()
|
||
} else {
|
||
other.y.clone()
|
||
},
|
||
}
|
||
}
|
||
|
||
/// Clamps the point to a specified range.
|
||
///
|
||
/// Given a minimum point and a maximum point, this method constrains the current point
|
||
/// such that its coordinates do not exceed the range defined by the minimum and maximum points.
|
||
/// If the current point's coordinates are less than the minimum, they are set to the minimum.
|
||
/// If they are greater than the maximum, they are set to the maximum.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `min` - A reference to a `Point` representing the minimum allowable coordinates.
|
||
/// * `max` - A reference to a `Point` representing the maximum allowable coordinates.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Point;
|
||
/// let p = Point { x: 10, y: 20 };
|
||
/// let min = Point { x: 0, y: 5 };
|
||
/// let max = Point { x: 15, y: 25 };
|
||
/// let clamped_p = p.clamp(&min, &max);
|
||
/// assert_eq!(clamped_p, Point { x: 10, y: 20 });
|
||
///
|
||
/// let p_out_of_bounds = Point { x: -5, y: 30 };
|
||
/// let clamped_p_out_of_bounds = p_out_of_bounds.clamp(&min, &max);
|
||
/// assert_eq!(clamped_p_out_of_bounds, Point { x: 0, y: 25 });
|
||
/// ```
|
||
pub fn clamp(&self, min: &Self, max: &Self) -> Self {
|
||
self.max(min).min(max)
|
||
}
|
||
}
|
||
|
||
impl<T: Clone + Default + Debug> Clone for Point<T> {
|
||
fn clone(&self) -> Self {
|
||
Self {
|
||
x: self.x.clone(),
|
||
y: self.y.clone(),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// A structure representing a two-dimensional size with width and height in a given unit.
|
||
///
|
||
/// This struct is generic over the type `T`, which can be any type that implements `Clone`, `Default`, and `Debug`.
|
||
/// It is commonly used to specify dimensions for elements in a UI, such as a window or element.
|
||
#[derive(Refineable, Default, Clone, Copy, PartialEq, Div, Hash, Serialize, Deserialize)]
|
||
#[refineable(Debug)]
|
||
#[repr(C)]
|
||
pub struct Size<T: Clone + Default + Debug> {
|
||
/// The width component of the size.
|
||
pub width: T,
|
||
/// The height component of the size.
|
||
pub height: T,
|
||
}
|
||
|
||
impl From<Size<DevicePixels>> for Size<Pixels> {
|
||
fn from(size: Size<DevicePixels>) -> Self {
|
||
Size {
|
||
width: Pixels(size.width.0 as f32),
|
||
height: Pixels(size.height.0 as f32),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Constructs a new `Size<T>` with the provided width and height.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `width` - The width component of the `Size`.
|
||
/// * `height` - The height component of the `Size`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Size;
|
||
/// let my_size = size(10, 20);
|
||
/// assert_eq!(my_size.width, 10);
|
||
/// assert_eq!(my_size.height, 20);
|
||
/// ```
|
||
pub const fn size<T>(width: T, height: T) -> Size<T>
|
||
where
|
||
T: Clone + Default + Debug,
|
||
{
|
||
Size { width, height }
|
||
}
|
||
|
||
impl<T> Size<T>
|
||
where
|
||
T: Clone + Default + Debug,
|
||
{
|
||
/// Applies a function to the width and height of the size, producing a new `Size<U>`.
|
||
///
|
||
/// This method allows for converting a `Size<T>` to a `Size<U>` by specifying a closure
|
||
/// that defines how to convert between the two types. The closure is applied to both the `width`
|
||
/// and `height`, resulting in a new size of the desired type.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Size;
|
||
/// let my_size = Size { width: 10, height: 20 };
|
||
/// let my_new_size = my_size.map(|dimension| dimension as f32 * 1.5);
|
||
/// assert_eq!(my_new_size, Size { width: 15.0, height: 30.0 });
|
||
/// ```
|
||
pub fn map<U>(&self, f: impl Fn(T) -> U) -> Size<U>
|
||
where
|
||
U: Clone + Default + Debug,
|
||
{
|
||
Size {
|
||
width: f(self.width.clone()),
|
||
height: f(self.height.clone()),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Size<T>
|
||
where
|
||
T: Clone + Default + Debug + Half,
|
||
{
|
||
/// Compute the center point of the size.g
|
||
pub fn center(&self) -> Point<T> {
|
||
Point {
|
||
x: self.width.half(),
|
||
y: self.height.half(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Size<Pixels> {
|
||
/// Scales the size by a given factor.
|
||
///
|
||
/// This method multiplies both the width and height by the provided scaling factor,
|
||
/// resulting in a new `Size<ScaledPixels>` that is proportionally larger or smaller
|
||
/// depending on the factor.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `factor` - The scaling factor to apply to the width and height.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Size, Pixels, ScaledPixels};
|
||
/// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
|
||
/// let scaled_size = size.scale(2.0);
|
||
/// assert_eq!(scaled_size, Size { width: ScaledPixels(200.0), height: ScaledPixels(100.0) });
|
||
/// ```
|
||
pub fn scale(&self, factor: f32) -> Size<ScaledPixels> {
|
||
Size {
|
||
width: self.width.scale(factor),
|
||
height: self.height.scale(factor),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Along for Size<T>
|
||
where
|
||
T: Clone + Default + Debug,
|
||
{
|
||
type Unit = T;
|
||
|
||
fn along(&self, axis: Axis) -> T {
|
||
match axis {
|
||
Axis::Horizontal => self.width.clone(),
|
||
Axis::Vertical => self.height.clone(),
|
||
}
|
||
}
|
||
|
||
/// Returns the value of this size along the given axis.
|
||
fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Self {
|
||
match axis {
|
||
Axis::Horizontal => Size {
|
||
width: f(self.width.clone()),
|
||
height: self.height.clone(),
|
||
},
|
||
Axis::Vertical => Size {
|
||
width: self.width.clone(),
|
||
height: f(self.height.clone()),
|
||
},
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Size<T>
|
||
where
|
||
T: PartialOrd + Clone + Default + Debug,
|
||
{
|
||
/// Returns a new `Size` with the maximum width and height from `self` and `other`.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `other` - A reference to another `Size` to compare with `self`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Size;
|
||
/// let size1 = Size { width: 30, height: 40 };
|
||
/// let size2 = Size { width: 50, height: 20 };
|
||
/// let max_size = size1.max(&size2);
|
||
/// assert_eq!(max_size, Size { width: 50, height: 40 });
|
||
/// ```
|
||
pub fn max(&self, other: &Self) -> Self {
|
||
Size {
|
||
width: if self.width >= other.width {
|
||
self.width.clone()
|
||
} else {
|
||
other.width.clone()
|
||
},
|
||
height: if self.height >= other.height {
|
||
self.height.clone()
|
||
} else {
|
||
other.height.clone()
|
||
},
|
||
}
|
||
}
|
||
/// Returns a new `Size` with the minimum width and height from `self` and `other`.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `other` - A reference to another `Size` to compare with `self`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Size;
|
||
/// let size1 = Size { width: 30, height: 40 };
|
||
/// let size2 = Size { width: 50, height: 20 };
|
||
/// let min_size = size1.min(&size2);
|
||
/// assert_eq!(min_size, Size { width: 30, height: 20 });
|
||
/// ```
|
||
pub fn min(&self, other: &Self) -> Self {
|
||
Size {
|
||
width: if self.width >= other.width {
|
||
other.width.clone()
|
||
} else {
|
||
self.width.clone()
|
||
},
|
||
height: if self.height >= other.height {
|
||
other.height.clone()
|
||
} else {
|
||
self.height.clone()
|
||
},
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Sub for Size<T>
|
||
where
|
||
T: Sub<Output = T> + Clone + Default + Debug,
|
||
{
|
||
type Output = Size<T>;
|
||
|
||
fn sub(self, rhs: Self) -> Self::Output {
|
||
Size {
|
||
width: self.width - rhs.width,
|
||
height: self.height - rhs.height,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Add for Size<T>
|
||
where
|
||
T: Add<Output = T> + Clone + Default + Debug,
|
||
{
|
||
type Output = Size<T>;
|
||
|
||
fn add(self, rhs: Self) -> Self::Output {
|
||
Size {
|
||
width: self.width + rhs.width,
|
||
height: self.height + rhs.height,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, Rhs> Mul<Rhs> for Size<T>
|
||
where
|
||
T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
|
||
Rhs: Clone + Default + Debug,
|
||
{
|
||
type Output = Size<Rhs>;
|
||
|
||
fn mul(self, rhs: Rhs) -> Self::Output {
|
||
Size {
|
||
width: self.width * rhs.clone(),
|
||
height: self.height * rhs,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> MulAssign<S> for Size<T>
|
||
where
|
||
T: Mul<S, Output = T> + Clone + Default + Debug,
|
||
S: Clone,
|
||
{
|
||
fn mul_assign(&mut self, rhs: S) {
|
||
self.width = self.width.clone() * rhs.clone();
|
||
self.height = self.height.clone() * rhs;
|
||
}
|
||
}
|
||
|
||
impl<T> Eq for Size<T> where T: Eq + Default + Debug + Clone {}
|
||
|
||
impl<T> Debug for Size<T>
|
||
where
|
||
T: Clone + Default + Debug,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
write!(f, "Size {{ {:?} × {:?} }}", self.width, self.height)
|
||
}
|
||
}
|
||
|
||
impl<T: Clone + Default + Debug> From<Point<T>> for Size<T> {
|
||
fn from(point: Point<T>) -> Self {
|
||
Self {
|
||
width: point.x,
|
||
height: point.y,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl From<Size<Pixels>> for Size<DevicePixels> {
|
||
fn from(size: Size<Pixels>) -> Self {
|
||
Size {
|
||
width: DevicePixels(size.width.0 as i32),
|
||
height: DevicePixels(size.height.0 as i32),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl From<Size<Pixels>> for Size<DefiniteLength> {
|
||
fn from(size: Size<Pixels>) -> Self {
|
||
Size {
|
||
width: size.width.into(),
|
||
height: size.height.into(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl From<Size<Pixels>> for Size<AbsoluteLength> {
|
||
fn from(size: Size<Pixels>) -> Self {
|
||
Size {
|
||
width: size.width.into(),
|
||
height: size.height.into(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Size<Length> {
|
||
/// Returns a `Size` with both width and height set to fill the available space.
|
||
///
|
||
/// This function creates a `Size` instance where both the width and height are set to `Length::Definite(DefiniteLength::Fraction(1.0))`,
|
||
/// which represents 100% of the available space in both dimensions.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Size<Length>` that will fill the available space when used in a layout.
|
||
pub fn full() -> Self {
|
||
Self {
|
||
width: relative(1.).into(),
|
||
height: relative(1.).into(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Size<Length> {
|
||
/// Returns a `Size` with both width and height set to `auto`, which allows the layout engine to determine the size.
|
||
///
|
||
/// This function creates a `Size` instance where both the width and height are set to `Length::Auto`,
|
||
/// indicating that their size should be computed based on the layout context, such as the content size or
|
||
/// available space.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Size<Length>` with width and height set to `Length::Auto`.
|
||
pub fn auto() -> Self {
|
||
Self {
|
||
width: Length::Auto,
|
||
height: Length::Auto,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Represents a rectangular area in a 2D space with an origin point and a size.
|
||
///
|
||
/// The `Bounds` struct is generic over a type `T` which represents the type of the coordinate system.
|
||
/// The origin is represented as a `Point<T>` which defines the upper-left corner of the rectangle,
|
||
/// and the size is represented as a `Size<T>` which defines the width and height of the rectangle.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let origin = Point { x: 0, y: 0 };
|
||
/// let size = Size { width: 10, height: 20 };
|
||
/// let bounds = Bounds::new(origin, size);
|
||
///
|
||
/// assert_eq!(bounds.origin, origin);
|
||
/// assert_eq!(bounds.size, size);
|
||
/// ```
|
||
#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq, Hash)]
|
||
#[refineable(Debug)]
|
||
#[repr(C)]
|
||
pub struct Bounds<T: Clone + Default + Debug> {
|
||
/// The origin point of this area.
|
||
pub origin: Point<T>,
|
||
/// The size of the rectangle.
|
||
pub size: Size<T>,
|
||
}
|
||
|
||
impl Bounds<DevicePixels> {
|
||
/// Generate a centered bounds for the given display or primary display if none is provided
|
||
pub fn centered(
|
||
display_id: Option<DisplayId>,
|
||
size: impl Into<Size<DevicePixels>>,
|
||
cx: &mut AppContext,
|
||
) -> Self {
|
||
let display = display_id
|
||
.and_then(|id| cx.find_display(id))
|
||
.or_else(|| cx.primary_display());
|
||
|
||
let size = size.into();
|
||
display
|
||
.map(|display| {
|
||
let center = display.bounds().center();
|
||
Bounds {
|
||
origin: point(center.x - size.width / 2, center.y - size.height / 2),
|
||
size,
|
||
}
|
||
})
|
||
.unwrap_or_else(|| Bounds {
|
||
origin: point(DevicePixels(0), DevicePixels(0)),
|
||
size,
|
||
})
|
||
}
|
||
|
||
/// Generate maximized bounds for the given display or primary display if none is provided
|
||
pub fn maximized(display_id: Option<DisplayId>, cx: &mut AppContext) -> Self {
|
||
let display = display_id
|
||
.and_then(|id| cx.find_display(id))
|
||
.or_else(|| cx.primary_display());
|
||
|
||
display
|
||
.map(|display| display.bounds())
|
||
.unwrap_or_else(|| Bounds {
|
||
origin: point(DevicePixels(0), DevicePixels(0)),
|
||
size: size(DevicePixels(1024), DevicePixels(768)),
|
||
})
|
||
}
|
||
}
|
||
|
||
impl<T> Bounds<T>
|
||
where
|
||
T: Clone + Debug + Sub<Output = T> + Default,
|
||
{
|
||
/// Constructs a `Bounds` from two corner points: the upper-left and lower-right corners.
|
||
///
|
||
/// This function calculates the origin and size of the `Bounds` based on the provided corner points.
|
||
/// The origin is set to the upper-left corner, and the size is determined by the difference between
|
||
/// the x and y coordinates of the lower-right and upper-left points.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `upper_left` - A `Point<T>` representing the upper-left corner of the rectangle.
|
||
/// * `lower_right` - A `Point<T>` representing the lower-right corner of the rectangle.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a `Bounds<T>` that encompasses the area defined by the two corner points.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point};
|
||
/// let upper_left = Point { x: 0, y: 0 };
|
||
/// let lower_right = Point { x: 10, y: 10 };
|
||
/// let bounds = Bounds::from_corners(upper_left, lower_right);
|
||
///
|
||
/// assert_eq!(bounds.origin, upper_left);
|
||
/// assert_eq!(bounds.size.width, 10);
|
||
/// assert_eq!(bounds.size.height, 10);
|
||
/// ```
|
||
pub fn from_corners(upper_left: Point<T>, lower_right: Point<T>) -> Self {
|
||
let origin = Point {
|
||
x: upper_left.x.clone(),
|
||
y: upper_left.y.clone(),
|
||
};
|
||
let size = Size {
|
||
width: lower_right.x - upper_left.x,
|
||
height: lower_right.y - upper_left.y,
|
||
};
|
||
Bounds { origin, size }
|
||
}
|
||
|
||
/// Creates a new `Bounds` with the specified origin and size.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `origin` - A `Point<T>` representing the origin of the bounds.
|
||
/// * `size` - A `Size<T>` representing the size of the bounds.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a `Bounds<T>` that has the given origin and size.
|
||
pub fn new(origin: Point<T>, size: Size<T>) -> Self {
|
||
Bounds { origin, size }
|
||
}
|
||
}
|
||
|
||
impl<T> Bounds<T>
|
||
where
|
||
T: Clone + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T> + Default + Half,
|
||
{
|
||
/// Checks if this `Bounds` intersects with another `Bounds`.
|
||
///
|
||
/// Two `Bounds` instances intersect if they overlap in the 2D space they occupy.
|
||
/// This method checks if there is any overlapping area between the two bounds.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `other` - A reference to another `Bounds` to check for intersection with.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns `true` if there is any intersection between the two bounds, `false` otherwise.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds1 = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 10 },
|
||
/// };
|
||
/// let bounds2 = Bounds {
|
||
/// origin: Point { x: 5, y: 5 },
|
||
/// size: Size { width: 10, height: 10 },
|
||
/// };
|
||
/// let bounds3 = Bounds {
|
||
/// origin: Point { x: 20, y: 20 },
|
||
/// size: Size { width: 10, height: 10 },
|
||
/// };
|
||
///
|
||
/// assert_eq!(bounds1.intersects(&bounds2), true); // Overlapping bounds
|
||
/// assert_eq!(bounds1.intersects(&bounds3), false); // Non-overlapping bounds
|
||
/// ```
|
||
pub fn intersects(&self, other: &Bounds<T>) -> bool {
|
||
let my_lower_right = self.lower_right();
|
||
let their_lower_right = other.lower_right();
|
||
|
||
self.origin.x < their_lower_right.x
|
||
&& my_lower_right.x > other.origin.x
|
||
&& self.origin.y < their_lower_right.y
|
||
&& my_lower_right.y > other.origin.y
|
||
}
|
||
|
||
/// Dilates the bounds by a specified amount in all directions.
|
||
///
|
||
/// This method expands the bounds by the given `amount`, increasing the size
|
||
/// and adjusting the origin so that the bounds grow outwards equally in all directions.
|
||
/// The resulting bounds will have its width and height increased by twice the `amount`
|
||
/// (since it grows in both directions), and the origin will be moved by `-amount`
|
||
/// in both the x and y directions.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `amount` - The amount by which to dilate the bounds.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let mut bounds = Bounds {
|
||
/// origin: Point { x: 10, y: 10 },
|
||
/// size: Size { width: 10, height: 10 },
|
||
/// };
|
||
/// bounds.dilate(5);
|
||
/// assert_eq!(bounds, Bounds {
|
||
/// origin: Point { x: 5, y: 5 },
|
||
/// size: Size { width: 20, height: 20 },
|
||
/// });
|
||
/// ```
|
||
pub fn dilate(&mut self, amount: T) {
|
||
self.origin.x = self.origin.x.clone() - amount.clone();
|
||
self.origin.y = self.origin.y.clone() - amount.clone();
|
||
let double_amount = amount.clone() + amount;
|
||
self.size.width = self.size.width.clone() + double_amount.clone();
|
||
self.size.height = self.size.height.clone() + double_amount;
|
||
}
|
||
|
||
/// Returns the center point of the bounds.
|
||
///
|
||
/// Calculates the center by taking the origin's x and y coordinates and adding half the width and height
|
||
/// of the bounds, respectively. The center is represented as a `Point<T>` where `T` is the type of the
|
||
/// coordinate system.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Point<T>` representing the center of the bounds.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 20 },
|
||
/// };
|
||
/// let center = bounds.center();
|
||
/// assert_eq!(center, Point { x: 5, y: 10 });
|
||
/// ```
|
||
pub fn center(&self) -> Point<T> {
|
||
Point {
|
||
x: self.origin.x.clone() + self.size.width.clone().half(),
|
||
y: self.origin.y.clone() + self.size.height.clone().half(),
|
||
}
|
||
}
|
||
|
||
/// Calculates the half perimeter of a rectangle defined by the bounds.
|
||
///
|
||
/// The half perimeter is calculated as the sum of the width and the height of the rectangle.
|
||
/// This method is generic over the type `T` which must implement the `Sub` trait to allow
|
||
/// calculation of the width and height from the bounds' origin and size, as well as the `Add` trait
|
||
/// to sum the width and height for the half perimeter.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 20 },
|
||
/// };
|
||
/// let half_perimeter = bounds.half_perimeter();
|
||
/// assert_eq!(half_perimeter, 30);
|
||
/// ```
|
||
pub fn half_perimeter(&self) -> T {
|
||
self.size.width.clone() + self.size.height.clone()
|
||
}
|
||
}
|
||
|
||
impl<T: Clone + Default + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T>> Bounds<T> {
|
||
/// Calculates the intersection of two `Bounds` objects.
|
||
///
|
||
/// This method computes the overlapping region of two `Bounds`. If the bounds do not intersect,
|
||
/// the resulting `Bounds` will have a size with width and height of zero.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `other` - A reference to another `Bounds` to intersect with.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a `Bounds` representing the intersection area. If there is no intersection,
|
||
/// the returned `Bounds` will have a size with width and height of zero.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds1 = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 10 },
|
||
/// };
|
||
/// let bounds2 = Bounds {
|
||
/// origin: Point { x: 5, y: 5 },
|
||
/// size: Size { width: 10, height: 10 },
|
||
/// };
|
||
/// let intersection = bounds1.intersect(&bounds2);
|
||
///
|
||
/// assert_eq!(intersection, Bounds {
|
||
/// origin: Point { x: 5, y: 5 },
|
||
/// size: Size { width: 5, height: 5 },
|
||
/// });
|
||
/// ```
|
||
pub fn intersect(&self, other: &Self) -> Self {
|
||
let upper_left = self.origin.max(&other.origin);
|
||
let lower_right = self.lower_right().min(&other.lower_right());
|
||
Self::from_corners(upper_left, lower_right)
|
||
}
|
||
|
||
/// Computes the union of two `Bounds`.
|
||
///
|
||
/// This method calculates the smallest `Bounds` that contains both the current `Bounds` and the `other` `Bounds`.
|
||
/// The resulting `Bounds` will have an origin that is the minimum of the origins of the two `Bounds`,
|
||
/// and a size that encompasses the furthest extents of both `Bounds`.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `other` - A reference to another `Bounds` to create a union with.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a `Bounds` representing the union of the two `Bounds`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds1 = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 10 },
|
||
/// };
|
||
/// let bounds2 = Bounds {
|
||
/// origin: Point { x: 5, y: 5 },
|
||
/// size: Size { width: 15, height: 15 },
|
||
/// };
|
||
/// let union_bounds = bounds1.union(&bounds2);
|
||
///
|
||
/// assert_eq!(union_bounds, Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 20, height: 20 },
|
||
/// });
|
||
/// ```
|
||
pub fn union(&self, other: &Self) -> Self {
|
||
let top_left = self.origin.min(&other.origin);
|
||
let bottom_right = self.lower_right().max(&other.lower_right());
|
||
Bounds::from_corners(top_left, bottom_right)
|
||
}
|
||
}
|
||
|
||
impl<T, Rhs> Mul<Rhs> for Bounds<T>
|
||
where
|
||
T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
|
||
Point<T>: Mul<Rhs, Output = Point<Rhs>>,
|
||
Rhs: Clone + Default + Debug,
|
||
{
|
||
type Output = Bounds<Rhs>;
|
||
|
||
fn mul(self, rhs: Rhs) -> Self::Output {
|
||
Bounds {
|
||
origin: self.origin * rhs.clone(),
|
||
size: self.size * rhs,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> MulAssign<S> for Bounds<T>
|
||
where
|
||
T: Mul<S, Output = T> + Clone + Default + Debug,
|
||
S: Clone,
|
||
{
|
||
fn mul_assign(&mut self, rhs: S) {
|
||
self.origin *= rhs.clone();
|
||
self.size *= rhs;
|
||
}
|
||
}
|
||
|
||
impl<T, S> Div<S> for Bounds<T>
|
||
where
|
||
Size<T>: Div<S, Output = Size<T>>,
|
||
T: Div<S, Output = T> + Default + Clone + Debug,
|
||
S: Clone,
|
||
{
|
||
type Output = Self;
|
||
|
||
fn div(self, rhs: S) -> Self {
|
||
Self {
|
||
origin: self.origin / rhs.clone(),
|
||
size: self.size / rhs,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Bounds<T>
|
||
where
|
||
T: Add<T, Output = T> + Clone + Default + Debug,
|
||
{
|
||
/// Returns the top edge of the bounds.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A value of type `T` representing the y-coordinate of the top edge of the bounds.
|
||
pub fn top(&self) -> T {
|
||
self.origin.y.clone()
|
||
}
|
||
|
||
/// Returns the bottom edge of the bounds.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A value of type `T` representing the y-coordinate of the bottom edge of the bounds.
|
||
pub fn bottom(&self) -> T {
|
||
self.origin.y.clone() + self.size.height.clone()
|
||
}
|
||
|
||
/// Returns the left edge of the bounds.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A value of type `T` representing the x-coordinate of the left edge of the bounds.
|
||
pub fn left(&self) -> T {
|
||
self.origin.x.clone()
|
||
}
|
||
|
||
/// Returns the right edge of the bounds.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A value of type `T` representing the x-coordinate of the right edge of the bounds.
|
||
pub fn right(&self) -> T {
|
||
self.origin.x.clone() + self.size.width.clone()
|
||
}
|
||
|
||
/// Returns the upper-right corner point of the bounds.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Point<T>` representing the upper-right corner of the bounds.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 20 },
|
||
/// };
|
||
/// let upper_right = bounds.upper_right();
|
||
/// assert_eq!(upper_right, Point { x: 10, y: 0 });
|
||
/// ```
|
||
pub fn upper_right(&self) -> Point<T> {
|
||
Point {
|
||
x: self.origin.x.clone() + self.size.width.clone(),
|
||
y: self.origin.y.clone(),
|
||
}
|
||
}
|
||
|
||
/// Returns the lower-right corner point of the bounds.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Point<T>` representing the lower-right corner of the bounds.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 20 },
|
||
/// };
|
||
/// let lower_right = bounds.lower_right();
|
||
/// assert_eq!(lower_right, Point { x: 10, y: 20 });
|
||
/// ```
|
||
pub fn lower_right(&self) -> Point<T> {
|
||
Point {
|
||
x: self.origin.x.clone() + self.size.width.clone(),
|
||
y: self.origin.y.clone() + self.size.height.clone(),
|
||
}
|
||
}
|
||
|
||
/// Returns the lower-left corner point of the bounds.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Point<T>` representing the lower-left corner of the bounds.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 20 },
|
||
/// };
|
||
/// let lower_left = bounds.lower_left();
|
||
/// assert_eq!(lower_left, Point { x: 0, y: 20 });
|
||
/// ```
|
||
pub fn lower_left(&self) -> Point<T> {
|
||
Point {
|
||
x: self.origin.x.clone(),
|
||
y: self.origin.y.clone() + self.size.height.clone(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Bounds<T>
|
||
where
|
||
T: Add<T, Output = T> + PartialOrd + Clone + Default + Debug,
|
||
{
|
||
/// Checks if the given point is within the bounds.
|
||
///
|
||
/// This method determines whether a point lies inside the rectangle defined by the bounds,
|
||
/// including the edges. The point is considered inside if its x-coordinate is greater than
|
||
/// or equal to the left edge and less than or equal to the right edge, and its y-coordinate
|
||
/// is greater than or equal to the top edge and less than or equal to the bottom edge of the bounds.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `point` - A reference to a `Point<T>` that represents the point to check.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns `true` if the point is within the bounds, `false` otherwise.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Point, Bounds};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: 0, y: 0 },
|
||
/// size: Size { width: 10, height: 10 },
|
||
/// };
|
||
/// let inside_point = Point { x: 5, y: 5 };
|
||
/// let outside_point = Point { x: 15, y: 15 };
|
||
///
|
||
/// assert!(bounds.contains_point(&inside_point));
|
||
/// assert!(!bounds.contains_point(&outside_point));
|
||
/// ```
|
||
pub fn contains(&self, point: &Point<T>) -> bool {
|
||
point.x >= self.origin.x
|
||
&& point.x <= self.origin.x.clone() + self.size.width.clone()
|
||
&& point.y >= self.origin.y
|
||
&& point.y <= self.origin.y.clone() + self.size.height.clone()
|
||
}
|
||
|
||
/// Applies a function to the origin and size of the bounds, producing a new `Bounds<U>`.
|
||
///
|
||
/// This method allows for converting a `Bounds<T>` to a `Bounds<U>` by specifying a closure
|
||
/// that defines how to convert between the two types. The closure is applied to the `origin` and
|
||
/// `size` fields, resulting in new bounds of the desired type.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Bounds<U>` with the origin and size mapped by the provided function.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: 10.0, y: 10.0 },
|
||
/// size: Size { width: 10.0, height: 20.0 },
|
||
/// };
|
||
/// let new_bounds = bounds.map(|value| value as f64 * 1.5);
|
||
///
|
||
/// assert_eq!(new_bounds, Bounds {
|
||
/// origin: Point { x: 15.0, y: 15.0 },
|
||
/// size: Size { width: 15.0, height: 30.0 },
|
||
/// });
|
||
/// ```
|
||
pub fn map<U>(&self, f: impl Fn(T) -> U) -> Bounds<U>
|
||
where
|
||
U: Clone + Default + Debug,
|
||
{
|
||
Bounds {
|
||
origin: self.origin.map(&f),
|
||
size: self.size.map(f),
|
||
}
|
||
}
|
||
|
||
/// Applies a function to the origin of the bounds, producing a new `Bounds` with the new origin
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: 10.0, y: 10.0 },
|
||
/// size: Size { width: 10.0, height: 20.0 },
|
||
/// };
|
||
/// let new_bounds = bounds.map_origin(|value| value * 1.5);
|
||
///
|
||
/// assert_eq!(new_bounds, Bounds {
|
||
/// origin: Point { x: 15.0, y: 15.0 },
|
||
/// size: Size { width: 10.0, height: 20.0 },
|
||
/// });
|
||
/// ```
|
||
pub fn map_origin(self, f: impl Fn(Point<T>) -> Point<T>) -> Bounds<T> {
|
||
Bounds {
|
||
origin: f(self.origin),
|
||
size: self.size,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Checks if the bounds represent an empty area.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
|
||
impl<T: PartialOrd + Default + Debug + Clone> Bounds<T> {
|
||
/// Checks if the bounds represent an empty area.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
|
||
pub fn is_empty(&self) -> bool {
|
||
self.size.width <= T::default() || self.size.height <= T::default()
|
||
}
|
||
}
|
||
|
||
impl Bounds<Pixels> {
|
||
/// Scales the bounds by a given factor, typically used to adjust for display scaling.
|
||
///
|
||
/// This method multiplies the origin and size of the bounds by the provided scaling factor,
|
||
/// resulting in a new `Bounds<ScaledPixels>` that is proportionally larger or smaller
|
||
/// depending on the scaling factor. This can be used to ensure that the bounds are properly
|
||
/// scaled for different display densities.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `factor` - The scaling factor to apply to the origin and size, typically the display's scaling factor.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Bounds<ScaledPixels>` that represents the scaled bounds.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Bounds, Point, Size, Pixels};
|
||
/// let bounds = Bounds {
|
||
/// origin: Point { x: Pixels(10.0), y: Pixels(20.0) },
|
||
/// size: Size { width: Pixels(30.0), height: Pixels(40.0) },
|
||
/// };
|
||
/// let display_scale_factor = 2.0;
|
||
/// let scaled_bounds = bounds.scale(display_scale_factor);
|
||
/// assert_eq!(scaled_bounds, Bounds {
|
||
/// origin: Point { x: ScaledPixels(20.0), y: ScaledPixels(40.0) },
|
||
/// size: Size { width: ScaledPixels(60.0), height: ScaledPixels(80.0) },
|
||
/// });
|
||
/// ```
|
||
pub fn scale(&self, factor: f32) -> Bounds<ScaledPixels> {
|
||
Bounds {
|
||
origin: self.origin.scale(factor),
|
||
size: self.size.scale(factor),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T: Clone + Debug + Copy + Default> Copy for Bounds<T> {}
|
||
|
||
/// Represents the edges of a box in a 2D space, such as padding or margin.
|
||
///
|
||
/// Each field represents the size of the edge on one side of the box: `top`, `right`, `bottom`, and `left`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Edges;
|
||
/// let edges = Edges {
|
||
/// top: 10.0,
|
||
/// right: 20.0,
|
||
/// bottom: 30.0,
|
||
/// left: 40.0,
|
||
/// };
|
||
///
|
||
/// assert_eq!(edges.top, 10.0);
|
||
/// assert_eq!(edges.right, 20.0);
|
||
/// assert_eq!(edges.bottom, 30.0);
|
||
/// assert_eq!(edges.left, 40.0);
|
||
/// ```
|
||
#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
|
||
#[refineable(Debug)]
|
||
#[repr(C)]
|
||
pub struct Edges<T: Clone + Default + Debug> {
|
||
/// The size of the top edge.
|
||
pub top: T,
|
||
/// The size of the right edge.
|
||
pub right: T,
|
||
/// The size of the bottom edge.
|
||
pub bottom: T,
|
||
/// The size of the left edge.
|
||
pub left: T,
|
||
}
|
||
|
||
impl<T> Mul for Edges<T>
|
||
where
|
||
T: Mul<Output = T> + Clone + Default + Debug,
|
||
{
|
||
type Output = Self;
|
||
|
||
fn mul(self, rhs: Self) -> Self::Output {
|
||
Self {
|
||
top: self.top.clone() * rhs.top,
|
||
right: self.right.clone() * rhs.right,
|
||
bottom: self.bottom.clone() * rhs.bottom,
|
||
left: self.left.clone() * rhs.left,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> MulAssign<S> for Edges<T>
|
||
where
|
||
T: Mul<S, Output = T> + Clone + Default + Debug,
|
||
S: Clone,
|
||
{
|
||
fn mul_assign(&mut self, rhs: S) {
|
||
self.top = self.top.clone() * rhs.clone();
|
||
self.right = self.right.clone() * rhs.clone();
|
||
self.bottom = self.bottom.clone() * rhs.clone();
|
||
self.left = self.left.clone() * rhs;
|
||
}
|
||
}
|
||
|
||
impl<T: Clone + Default + Debug + Copy> Copy for Edges<T> {}
|
||
|
||
impl<T: Clone + Default + Debug> Edges<T> {
|
||
/// Constructs `Edges` where all sides are set to the same specified value.
|
||
///
|
||
/// This function creates an `Edges` instance with the `top`, `right`, `bottom`, and `left` fields all initialized
|
||
/// to the same value provided as an argument. This is useful when you want to have uniform edges around a box,
|
||
/// such as padding or margin with the same size on all sides.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `value` - The value to set for all four sides of the edges.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// An `Edges` instance with all sides set to the given value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Edges;
|
||
/// let uniform_edges = Edges::all(10.0);
|
||
/// assert_eq!(uniform_edges.top, 10.0);
|
||
/// assert_eq!(uniform_edges.right, 10.0);
|
||
/// assert_eq!(uniform_edges.bottom, 10.0);
|
||
/// assert_eq!(uniform_edges.left, 10.0);
|
||
/// ```
|
||
pub fn all(value: T) -> Self {
|
||
Self {
|
||
top: value.clone(),
|
||
right: value.clone(),
|
||
bottom: value.clone(),
|
||
left: value,
|
||
}
|
||
}
|
||
|
||
/// Applies a function to each field of the `Edges`, producing a new `Edges<U>`.
|
||
///
|
||
/// This method allows for converting an `Edges<T>` to an `Edges<U>` by specifying a closure
|
||
/// that defines how to convert between the two types. The closure is applied to each field
|
||
/// (`top`, `right`, `bottom`, `left`), resulting in new edges of the desired type.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Edges<U>` with each field mapped by the provided function.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Edges;
|
||
/// let edges = Edges { top: 10, right: 20, bottom: 30, left: 40 };
|
||
/// let edges_float = edges.map(|&value| value as f32 * 1.1);
|
||
/// assert_eq!(edges_float, Edges { top: 11.0, right: 22.0, bottom: 33.0, left: 44.0 });
|
||
/// ```
|
||
pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Edges<U>
|
||
where
|
||
U: Clone + Default + Debug,
|
||
{
|
||
Edges {
|
||
top: f(&self.top),
|
||
right: f(&self.right),
|
||
bottom: f(&self.bottom),
|
||
left: f(&self.left),
|
||
}
|
||
}
|
||
|
||
/// Checks if any of the edges satisfy a given predicate.
|
||
///
|
||
/// This method applies a predicate function to each field of the `Edges` and returns `true` if any field satisfies the predicate.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `predicate` - A closure that takes a reference to a value of type `T` and returns a `bool`.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns `true` if the predicate returns `true` for any of the edge values, `false` otherwise.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Edges;
|
||
/// let edges = Edges {
|
||
/// top: 10,
|
||
/// right: 0,
|
||
/// bottom: 5,
|
||
/// left: 0,
|
||
/// };
|
||
///
|
||
/// assert!(edges.any(|value| *value == 0));
|
||
/// assert!(edges.any(|value| *value > 0));
|
||
/// assert!(!edges.any(|value| *value > 10));
|
||
/// ```
|
||
pub fn any<F: Fn(&T) -> bool>(&self, predicate: F) -> bool {
|
||
predicate(&self.top)
|
||
|| predicate(&self.right)
|
||
|| predicate(&self.bottom)
|
||
|| predicate(&self.left)
|
||
}
|
||
}
|
||
|
||
impl Edges<Length> {
|
||
/// Sets the edges of the `Edges` struct to `auto`, which is a special value that allows the layout engine to automatically determine the size of the edges.
|
||
///
|
||
/// This is typically used in layout contexts where the exact size of the edges is not important, or when the size should be calculated based on the content or container.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns an `Edges<Length>` with all edges set to `Length::Auto`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Edges;
|
||
/// let auto_edges = Edges::auto();
|
||
/// assert_eq!(auto_edges.top, Length::Auto);
|
||
/// assert_eq!(auto_edges.right, Length::Auto);
|
||
/// assert_eq!(auto_edges.bottom, Length::Auto);
|
||
/// assert_eq!(auto_edges.left, Length::Auto);
|
||
/// ```
|
||
pub fn auto() -> Self {
|
||
Self {
|
||
top: Length::Auto,
|
||
right: Length::Auto,
|
||
bottom: Length::Auto,
|
||
left: Length::Auto,
|
||
}
|
||
}
|
||
|
||
/// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
|
||
///
|
||
/// This is typically used when you want to specify that a box (like a padding or margin area)
|
||
/// should have no edges, effectively making it non-existent or invisible in layout calculations.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns an `Edges<Length>` with all edges set to zero length.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Edges;
|
||
/// let no_edges = Edges::zero();
|
||
/// assert_eq!(no_edges.top, Length::Definite(DefiniteLength::from(Pixels(0.))));
|
||
/// assert_eq!(no_edges.right, Length::Definite(DefiniteLength::from(Pixels(0.))));
|
||
/// assert_eq!(no_edges.bottom, Length::Definite(DefiniteLength::from(Pixels(0.))));
|
||
/// assert_eq!(no_edges.left, Length::Definite(DefiniteLength::from(Pixels(0.))));
|
||
/// ```
|
||
pub fn zero() -> Self {
|
||
Self {
|
||
top: px(0.).into(),
|
||
right: px(0.).into(),
|
||
bottom: px(0.).into(),
|
||
left: px(0.).into(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Edges<DefiniteLength> {
|
||
/// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
|
||
///
|
||
/// This is typically used when you want to specify that a box (like a padding or margin area)
|
||
/// should have no edges, effectively making it non-existent or invisible in layout calculations.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns an `Edges<DefiniteLength>` with all edges set to zero length.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Edges;
|
||
/// let no_edges = Edges::zero();
|
||
/// assert_eq!(no_edges.top, DefiniteLength::from(zed::px(0.)));
|
||
/// assert_eq!(no_edges.right, DefiniteLength::from(zed::px(0.)));
|
||
/// assert_eq!(no_edges.bottom, DefiniteLength::from(zed::px(0.)));
|
||
/// assert_eq!(no_edges.left, DefiniteLength::from(zed::px(0.)));
|
||
/// ```
|
||
pub fn zero() -> Self {
|
||
Self {
|
||
top: px(0.).into(),
|
||
right: px(0.).into(),
|
||
bottom: px(0.).into(),
|
||
left: px(0.).into(),
|
||
}
|
||
}
|
||
|
||
/// Converts the `DefiniteLength` to `Pixels` based on the parent size and the REM size.
|
||
///
|
||
/// This method allows for a `DefiniteLength` value to be converted into pixels, taking into account
|
||
/// the size of the parent element (for percentage-based lengths) and the size of a rem unit (for rem-based lengths).
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `parent_size` - `Size<AbsoluteLength>` representing the size of the parent element.
|
||
/// * `rem_size` - `Pixels` representing the size of one REM unit.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Edges, DefiniteLength, px, AbsoluteLength, Size};
|
||
/// let edges = Edges {
|
||
/// top: DefiniteLength::Absolute(AbsoluteLength::Pixels(px(10.0))),
|
||
/// right: DefiniteLength::Fraction(0.5),
|
||
/// bottom: DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0))),
|
||
/// left: DefiniteLength::Fraction(0.25),
|
||
/// };
|
||
/// let parent_size = Size {
|
||
/// width: AbsoluteLength::Pixels(px(200.0)),
|
||
/// height: AbsoluteLength::Pixels(px(100.0)),
|
||
/// };
|
||
/// let rem_size = px(16.0);
|
||
/// let edges_in_pixels = edges.to_pixels(parent_size, rem_size);
|
||
///
|
||
/// assert_eq!(edges_in_pixels.top, px(10.0)); // Absolute length in pixels
|
||
/// assert_eq!(edges_in_pixels.right, px(100.0)); // 50% of parent width
|
||
/// assert_eq!(edges_in_pixels.bottom, px(32.0)); // 2 rems
|
||
/// assert_eq!(edges_in_pixels.left, px(50.0)); // 25% of parent width
|
||
/// ```
|
||
pub fn to_pixels(&self, parent_size: Size<AbsoluteLength>, rem_size: Pixels) -> Edges<Pixels> {
|
||
Edges {
|
||
top: self.top.to_pixels(parent_size.height, rem_size),
|
||
right: self.right.to_pixels(parent_size.width, rem_size),
|
||
bottom: self.bottom.to_pixels(parent_size.height, rem_size),
|
||
left: self.left.to_pixels(parent_size.width, rem_size),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Edges<AbsoluteLength> {
|
||
/// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
|
||
///
|
||
/// This is typically used when you want to specify that a box (like a padding or margin area)
|
||
/// should have no edges, effectively making it non-existent or invisible in layout calculations.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns an `Edges<AbsoluteLength>` with all edges set to zero length.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Edges;
|
||
/// let no_edges = Edges::zero();
|
||
/// assert_eq!(no_edges.top, AbsoluteLength::Pixels(Pixels(0.0)));
|
||
/// assert_eq!(no_edges.right, AbsoluteLength::Pixels(Pixels(0.0)));
|
||
/// assert_eq!(no_edges.bottom, AbsoluteLength::Pixels(Pixels(0.0)));
|
||
/// assert_eq!(no_edges.left, AbsoluteLength::Pixels(Pixels(0.0)));
|
||
/// ```
|
||
pub fn zero() -> Self {
|
||
Self {
|
||
top: px(0.).into(),
|
||
right: px(0.).into(),
|
||
bottom: px(0.).into(),
|
||
left: px(0.).into(),
|
||
}
|
||
}
|
||
|
||
/// Converts the `AbsoluteLength` to `Pixels` based on the `rem_size`.
|
||
///
|
||
/// If the `AbsoluteLength` is already in pixels, it simply returns the corresponding `Pixels` value.
|
||
/// If the `AbsoluteLength` is in rems, it multiplies the number of rems by the `rem_size` to convert it to pixels.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `rem_size` - The size of one rem unit in pixels.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Edges, AbsoluteLength, Pixels, px};
|
||
/// let edges = Edges {
|
||
/// top: AbsoluteLength::Pixels(px(10.0)),
|
||
/// right: AbsoluteLength::Rems(rems(1.0)),
|
||
/// bottom: AbsoluteLength::Pixels(px(20.0)),
|
||
/// left: AbsoluteLength::Rems(rems(2.0)),
|
||
/// };
|
||
/// let rem_size = px(16.0);
|
||
/// let edges_in_pixels = edges.to_pixels(rem_size);
|
||
///
|
||
/// assert_eq!(edges_in_pixels.top, px(10.0)); // Already in pixels
|
||
/// assert_eq!(edges_in_pixels.right, px(16.0)); // 1 rem converted to pixels
|
||
/// assert_eq!(edges_in_pixels.bottom, px(20.0)); // Already in pixels
|
||
/// assert_eq!(edges_in_pixels.left, px(32.0)); // 2 rems converted to pixels
|
||
/// ```
|
||
pub fn to_pixels(&self, rem_size: Pixels) -> Edges<Pixels> {
|
||
Edges {
|
||
top: self.top.to_pixels(rem_size),
|
||
right: self.right.to_pixels(rem_size),
|
||
bottom: self.bottom.to_pixels(rem_size),
|
||
left: self.left.to_pixels(rem_size),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Edges<Pixels> {
|
||
/// Scales the `Edges<Pixels>` by a given factor, returning `Edges<ScaledPixels>`.
|
||
///
|
||
/// This method is typically used for adjusting the edge sizes for different display densities or scaling factors.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `factor` - The scaling factor to apply to each edge.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Edges<ScaledPixels>` where each edge is the result of scaling the original edge by the given factor.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Edges, Pixels};
|
||
/// let edges = Edges {
|
||
/// top: Pixels(10.0),
|
||
/// right: Pixels(20.0),
|
||
/// bottom: Pixels(30.0),
|
||
/// left: Pixels(40.0),
|
||
/// };
|
||
/// let scaled_edges = edges.scale(2.0);
|
||
/// assert_eq!(scaled_edges.top, ScaledPixels(20.0));
|
||
/// assert_eq!(scaled_edges.right, ScaledPixels(40.0));
|
||
/// assert_eq!(scaled_edges.bottom, ScaledPixels(60.0));
|
||
/// assert_eq!(scaled_edges.left, ScaledPixels(80.0));
|
||
/// ```
|
||
pub fn scale(&self, factor: f32) -> Edges<ScaledPixels> {
|
||
Edges {
|
||
top: self.top.scale(factor),
|
||
right: self.right.scale(factor),
|
||
bottom: self.bottom.scale(factor),
|
||
left: self.left.scale(factor),
|
||
}
|
||
}
|
||
|
||
/// Returns the maximum value of any edge.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// The maximum `Pixels` value among all four edges.
|
||
pub fn max(&self) -> Pixels {
|
||
self.top.max(self.right).max(self.bottom).max(self.left)
|
||
}
|
||
}
|
||
|
||
impl From<f32> for Edges<Pixels> {
|
||
fn from(val: f32) -> Self {
|
||
Edges {
|
||
top: val.into(),
|
||
right: val.into(),
|
||
bottom: val.into(),
|
||
left: val.into(),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Represents the corners of a box in a 2D space, such as border radius.
|
||
///
|
||
/// Each field represents the size of the corner on one side of the box: `top_left`, `top_right`, `bottom_right`, and `bottom_left`.
|
||
#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
|
||
#[refineable(Debug)]
|
||
#[repr(C)]
|
||
pub struct Corners<T: Clone + Default + Debug> {
|
||
/// The value associated with the top left corner.
|
||
pub top_left: T,
|
||
/// The value associated with the top right corner.
|
||
pub top_right: T,
|
||
/// The value associated with the bottom right corner.
|
||
pub bottom_right: T,
|
||
/// The value associated with the bottom left corner.
|
||
pub bottom_left: T,
|
||
}
|
||
|
||
impl<T> Corners<T>
|
||
where
|
||
T: Clone + Default + Debug,
|
||
{
|
||
/// Constructs `Corners` where all sides are set to the same specified value.
|
||
///
|
||
/// This function creates a `Corners` instance with the `top_left`, `top_right`, `bottom_right`, and `bottom_left` fields all initialized
|
||
/// to the same value provided as an argument. This is useful when you want to have uniform corners around a box,
|
||
/// such as a uniform border radius on a rectangle.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `value` - The value to set for all four corners.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// An `Corners` instance with all corners set to the given value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::Corners;
|
||
/// let uniform_corners = Corners::all(5.0);
|
||
/// assert_eq!(uniform_corners.top_left, 5.0);
|
||
/// assert_eq!(uniform_corners.top_right, 5.0);
|
||
/// assert_eq!(uniform_corners.bottom_right, 5.0);
|
||
/// assert_eq!(uniform_corners.bottom_left, 5.0);
|
||
/// ```
|
||
pub fn all(value: T) -> Self {
|
||
Self {
|
||
top_left: value.clone(),
|
||
top_right: value.clone(),
|
||
bottom_right: value.clone(),
|
||
bottom_left: value,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Corners<AbsoluteLength> {
|
||
/// Converts the `AbsoluteLength` to `Pixels` based on the provided size and rem size, ensuring the resulting
|
||
/// `Pixels` do not exceed half of the maximum of the provided size's width and height.
|
||
///
|
||
/// This method is particularly useful when dealing with corner radii, where the radius in pixels should not
|
||
/// exceed half the size of the box it applies to, to avoid the corners overlapping.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `size` - The `Size<Pixels>` against which the maximum allowable radius is determined.
|
||
/// * `rem_size` - The size of one REM unit in pixels, used for conversion if the `AbsoluteLength` is in REMs.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a `Corners<Pixels>` instance with each corner's length converted to pixels and clamped to the
|
||
/// maximum allowable radius based on the provided size.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Corners, AbsoluteLength, Pixels, Size};
|
||
/// let corners = Corners {
|
||
/// top_left: AbsoluteLength::Pixels(Pixels(15.0)),
|
||
/// top_right: AbsoluteLength::Rems(Rems(1.0)),
|
||
/// bottom_right: AbsoluteLength::Pixels(Pixels(20.0)),
|
||
/// bottom_left: AbsoluteLength::Rems(Rems(2.0)),
|
||
/// };
|
||
/// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
|
||
/// let rem_size = Pixels(16.0);
|
||
/// let corners_in_pixels = corners.to_pixels(size, rem_size);
|
||
///
|
||
/// // The resulting corners should not exceed half the size of the smallest dimension (50.0 / 2.0 = 25.0).
|
||
/// assert_eq!(corners_in_pixels.top_left, Pixels(15.0));
|
||
/// assert_eq!(corners_in_pixels.top_right, Pixels(16.0)); // 1 rem converted to pixels
|
||
/// assert_eq!(corners_in_pixels.bottom_right, Pixels(20.0).min(Pixels(25.0))); // Clamped to 25.0
|
||
/// assert_eq!(corners_in_pixels.bottom_left, Pixels(32.0).min(Pixels(25.0))); // 2 rems converted to pixels and clamped
|
||
/// ```
|
||
pub fn to_pixels(&self, size: Size<Pixels>, rem_size: Pixels) -> Corners<Pixels> {
|
||
let max = size.width.max(size.height) / 2.;
|
||
Corners {
|
||
top_left: self.top_left.to_pixels(rem_size).min(max),
|
||
top_right: self.top_right.to_pixels(rem_size).min(max),
|
||
bottom_right: self.bottom_right.to_pixels(rem_size).min(max),
|
||
bottom_left: self.bottom_left.to_pixels(rem_size).min(max),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Corners<Pixels> {
|
||
/// Scales the `Corners<Pixels>` by a given factor, returning `Corners<ScaledPixels>`.
|
||
///
|
||
/// This method is typically used for adjusting the corner sizes for different display densities or scaling factors.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `factor` - The scaling factor to apply to each corner.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Corners<ScaledPixels>` where each corner is the result of scaling the original corner by the given factor.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Corners, Pixels};
|
||
/// let corners = Corners {
|
||
/// top_left: Pixels(10.0),
|
||
/// top_right: Pixels(20.0),
|
||
/// bottom_right: Pixels(30.0),
|
||
/// bottom_left: Pixels(40.0),
|
||
/// };
|
||
/// let scaled_corners = corners.scale(2.0);
|
||
/// assert_eq!(scaled_corners.top_left, ScaledPixels(20.0));
|
||
/// assert_eq!(scaled_corners.top_right, ScaledPixels(40.0));
|
||
/// assert_eq!(scaled_corners.bottom_right, ScaledPixels(60.0));
|
||
/// assert_eq!(scaled_corners.bottom_left, ScaledPixels(80.0));
|
||
/// ```
|
||
pub fn scale(&self, factor: f32) -> Corners<ScaledPixels> {
|
||
Corners {
|
||
top_left: self.top_left.scale(factor),
|
||
top_right: self.top_right.scale(factor),
|
||
bottom_right: self.bottom_right.scale(factor),
|
||
bottom_left: self.bottom_left.scale(factor),
|
||
}
|
||
}
|
||
|
||
/// Returns the maximum value of any corner.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// The maximum `Pixels` value among all four corners.
|
||
pub fn max(&self) -> Pixels {
|
||
self.top_left
|
||
.max(self.top_right)
|
||
.max(self.bottom_right)
|
||
.max(self.bottom_left)
|
||
}
|
||
}
|
||
|
||
impl<T: Clone + Default + Debug> Corners<T> {
|
||
/// Applies a function to each field of the `Corners`, producing a new `Corners<U>`.
|
||
///
|
||
/// This method allows for converting a `Corners<T>` to a `Corners<U>` by specifying a closure
|
||
/// that defines how to convert between the two types. The closure is applied to each field
|
||
/// (`top_left`, `top_right`, `bottom_right`, `bottom_left`), resulting in new corners of the desired type.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Corners<U>` with each field mapped by the provided function.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{Corners, Pixels};
|
||
/// let corners = Corners {
|
||
/// top_left: Pixels(10.0),
|
||
/// top_right: Pixels(20.0),
|
||
/// bottom_right: Pixels(30.0),
|
||
/// bottom_left: Pixels(40.0),
|
||
/// };
|
||
/// let corners_in_rems = corners.map(|&px| Rems(px.0 / 16.0));
|
||
/// assert_eq!(corners_in_rems, Corners {
|
||
/// top_left: Rems(0.625),
|
||
/// top_right: Rems(1.25),
|
||
/// bottom_right: Rems(1.875),
|
||
/// bottom_left: Rems(2.5),
|
||
/// });
|
||
/// ```
|
||
pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Corners<U>
|
||
where
|
||
U: Clone + Default + Debug,
|
||
{
|
||
Corners {
|
||
top_left: f(&self.top_left),
|
||
top_right: f(&self.top_right),
|
||
bottom_right: f(&self.bottom_right),
|
||
bottom_left: f(&self.bottom_left),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Mul for Corners<T>
|
||
where
|
||
T: Mul<Output = T> + Clone + Default + Debug,
|
||
{
|
||
type Output = Self;
|
||
|
||
fn mul(self, rhs: Self) -> Self::Output {
|
||
Self {
|
||
top_left: self.top_left.clone() * rhs.top_left,
|
||
top_right: self.top_right.clone() * rhs.top_right,
|
||
bottom_right: self.bottom_right.clone() * rhs.bottom_right,
|
||
bottom_left: self.bottom_left.clone() * rhs.bottom_left,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, S> MulAssign<S> for Corners<T>
|
||
where
|
||
T: Mul<S, Output = T> + Clone + Default + Debug,
|
||
S: Clone,
|
||
{
|
||
fn mul_assign(&mut self, rhs: S) {
|
||
self.top_left = self.top_left.clone() * rhs.clone();
|
||
self.top_right = self.top_right.clone() * rhs.clone();
|
||
self.bottom_right = self.bottom_right.clone() * rhs.clone();
|
||
self.bottom_left = self.bottom_left.clone() * rhs;
|
||
}
|
||
}
|
||
|
||
impl<T> Copy for Corners<T> where T: Copy + Clone + Default + Debug {}
|
||
|
||
impl From<f32> for Corners<Pixels> {
|
||
fn from(val: f32) -> Self {
|
||
Corners {
|
||
top_left: val.into(),
|
||
top_right: val.into(),
|
||
bottom_right: val.into(),
|
||
bottom_left: val.into(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl From<Pixels> for Corners<Pixels> {
|
||
fn from(val: Pixels) -> Self {
|
||
Corners {
|
||
top_left: val,
|
||
top_right: val,
|
||
bottom_right: val,
|
||
bottom_left: val,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Represents an angle in Radians
|
||
#[derive(
|
||
Clone,
|
||
Copy,
|
||
Default,
|
||
Add,
|
||
AddAssign,
|
||
Sub,
|
||
SubAssign,
|
||
Neg,
|
||
Div,
|
||
DivAssign,
|
||
PartialEq,
|
||
Serialize,
|
||
Deserialize,
|
||
Debug,
|
||
)]
|
||
#[repr(transparent)]
|
||
pub struct Radians(pub f32);
|
||
|
||
/// Create a `Radian` from a raw value
|
||
pub fn radians(value: f32) -> Radians {
|
||
Radians(value)
|
||
}
|
||
|
||
/// A type representing a percentage value.
|
||
#[derive(
|
||
Clone,
|
||
Copy,
|
||
Default,
|
||
Add,
|
||
AddAssign,
|
||
Sub,
|
||
SubAssign,
|
||
Neg,
|
||
Div,
|
||
DivAssign,
|
||
PartialEq,
|
||
Serialize,
|
||
Deserialize,
|
||
Debug,
|
||
)]
|
||
#[repr(transparent)]
|
||
pub struct Percentage(pub f32);
|
||
|
||
/// Generate a `Radian` from a percentage of a full circle.
|
||
pub fn percentage(value: f32) -> Percentage {
|
||
debug_assert!(
|
||
value >= 0.0 && value <= 1.0,
|
||
"Percentage must be between 0 and 1"
|
||
);
|
||
Percentage(value)
|
||
}
|
||
|
||
impl From<Percentage> for Radians {
|
||
fn from(value: Percentage) -> Self {
|
||
radians(value.0 * std::f32::consts::PI * 2.0)
|
||
}
|
||
}
|
||
|
||
/// Represents a length in pixels, the base unit of measurement in the UI framework.
|
||
///
|
||
/// `Pixels` is a value type that represents an absolute length in pixels, which is used
|
||
/// for specifying sizes, positions, and distances in the UI. It is the fundamental unit
|
||
/// of measurement for all visual elements and layout calculations.
|
||
///
|
||
/// The inner value is an `f32`, allowing for sub-pixel precision which can be useful for
|
||
/// anti-aliasing and animations. However, when applied to actual pixel grids, the value
|
||
/// is typically rounded to the nearest integer.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use zed::Pixels;
|
||
///
|
||
/// // Define a length of 10 pixels
|
||
/// let length = Pixels(10.0);
|
||
///
|
||
/// // Define a length and scale it by a factor of 2
|
||
/// let scaled_length = length.scale(2.0);
|
||
/// assert_eq!(scaled_length, Pixels(20.0));
|
||
/// ```
|
||
#[derive(
|
||
Clone,
|
||
Copy,
|
||
Default,
|
||
Add,
|
||
AddAssign,
|
||
Sub,
|
||
SubAssign,
|
||
Neg,
|
||
Div,
|
||
DivAssign,
|
||
PartialEq,
|
||
Serialize,
|
||
Deserialize,
|
||
)]
|
||
#[repr(transparent)]
|
||
pub struct Pixels(pub f32);
|
||
|
||
impl std::ops::Div for Pixels {
|
||
type Output = f32;
|
||
|
||
fn div(self, rhs: Self) -> Self::Output {
|
||
self.0 / rhs.0
|
||
}
|
||
}
|
||
|
||
impl std::ops::DivAssign for Pixels {
|
||
fn div_assign(&mut self, rhs: Self) {
|
||
*self = Self(self.0 / rhs.0);
|
||
}
|
||
}
|
||
|
||
impl std::ops::RemAssign for Pixels {
|
||
fn rem_assign(&mut self, rhs: Self) {
|
||
self.0 %= rhs.0;
|
||
}
|
||
}
|
||
|
||
impl std::ops::Rem for Pixels {
|
||
type Output = Self;
|
||
|
||
fn rem(self, rhs: Self) -> Self {
|
||
Self(self.0 % rhs.0)
|
||
}
|
||
}
|
||
|
||
impl Mul<f32> for Pixels {
|
||
type Output = Pixels;
|
||
|
||
fn mul(self, other: f32) -> Pixels {
|
||
Pixels(self.0 * other)
|
||
}
|
||
}
|
||
|
||
impl Mul<usize> for Pixels {
|
||
type Output = Pixels;
|
||
|
||
fn mul(self, other: usize) -> Pixels {
|
||
Pixels(self.0 * other as f32)
|
||
}
|
||
}
|
||
|
||
impl Mul<Pixels> for f32 {
|
||
type Output = Pixels;
|
||
|
||
fn mul(self, rhs: Pixels) -> Self::Output {
|
||
Pixels(self * rhs.0)
|
||
}
|
||
}
|
||
|
||
impl MulAssign<f32> for Pixels {
|
||
fn mul_assign(&mut self, other: f32) {
|
||
self.0 *= other;
|
||
}
|
||
}
|
||
|
||
impl Pixels {
|
||
/// Represents zero pixels.
|
||
pub const ZERO: Pixels = Pixels(0.0);
|
||
/// The maximum value that can be represented by `Pixels`.
|
||
pub const MAX: Pixels = Pixels(f32::MAX);
|
||
|
||
/// Floors the `Pixels` value to the nearest whole number.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Pixels` instance with the floored value.
|
||
pub fn floor(&self) -> Self {
|
||
Self(self.0.floor())
|
||
}
|
||
|
||
/// Rounds the `Pixels` value to the nearest whole number.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Pixels` instance with the rounded value.
|
||
pub fn round(&self) -> Self {
|
||
Self(self.0.round())
|
||
}
|
||
|
||
/// Returns the ceiling of the `Pixels` value to the nearest whole number.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Pixels` instance with the ceiling value.
|
||
pub fn ceil(&self) -> Self {
|
||
Self(self.0.ceil())
|
||
}
|
||
|
||
/// Scales the `Pixels` value by a given factor, producing `ScaledPixels`.
|
||
///
|
||
/// This method is used when adjusting pixel values for display scaling factors,
|
||
/// such as high DPI (dots per inch) or Retina displays, where the pixel density is higher and
|
||
/// thus requires scaling to maintain visual consistency and readability.
|
||
///
|
||
/// The resulting `ScaledPixels` represent the scaled value which can be used for rendering
|
||
/// calculations where display scaling is considered.
|
||
pub fn scale(&self, factor: f32) -> ScaledPixels {
|
||
ScaledPixels(self.0 * factor)
|
||
}
|
||
|
||
/// Raises the `Pixels` value to a given power.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `exponent` - The exponent to raise the `Pixels` value by.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `Pixels` instance with the value raised to the given exponent.
|
||
pub fn pow(&self, exponent: f32) -> Self {
|
||
Self(self.0.powf(exponent))
|
||
}
|
||
|
||
/// Returns the absolute value of the `Pixels`.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A new `Pixels` instance with the absolute value of the original `Pixels`.
|
||
pub fn abs(&self) -> Self {
|
||
Self(self.0.abs())
|
||
}
|
||
}
|
||
|
||
impl Mul<Pixels> for Pixels {
|
||
type Output = Pixels;
|
||
|
||
fn mul(self, rhs: Pixels) -> Self::Output {
|
||
Pixels(self.0 * rhs.0)
|
||
}
|
||
}
|
||
|
||
impl Eq for Pixels {}
|
||
|
||
impl PartialOrd for Pixels {
|
||
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
|
||
Some(self.cmp(other))
|
||
}
|
||
}
|
||
|
||
impl Ord for Pixels {
|
||
fn cmp(&self, other: &Self) -> cmp::Ordering {
|
||
self.0.total_cmp(&other.0)
|
||
}
|
||
}
|
||
|
||
impl std::hash::Hash for Pixels {
|
||
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
|
||
self.0.to_bits().hash(state);
|
||
}
|
||
}
|
||
|
||
impl From<f64> for Pixels {
|
||
fn from(pixels: f64) -> Self {
|
||
Pixels(pixels as f32)
|
||
}
|
||
}
|
||
|
||
impl From<f32> for Pixels {
|
||
fn from(pixels: f32) -> Self {
|
||
Pixels(pixels)
|
||
}
|
||
}
|
||
|
||
impl Debug for Pixels {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
write!(f, "{} px", self.0)
|
||
}
|
||
}
|
||
|
||
impl From<Pixels> for f32 {
|
||
fn from(pixels: Pixels) -> Self {
|
||
pixels.0
|
||
}
|
||
}
|
||
|
||
impl From<&Pixels> for f32 {
|
||
fn from(pixels: &Pixels) -> Self {
|
||
pixels.0
|
||
}
|
||
}
|
||
|
||
impl From<Pixels> for f64 {
|
||
fn from(pixels: Pixels) -> Self {
|
||
pixels.0 as f64
|
||
}
|
||
}
|
||
|
||
impl From<Pixels> for u32 {
|
||
fn from(pixels: Pixels) -> Self {
|
||
pixels.0 as u32
|
||
}
|
||
}
|
||
|
||
impl From<u32> for Pixels {
|
||
fn from(pixels: u32) -> Self {
|
||
Pixels(pixels as f32)
|
||
}
|
||
}
|
||
|
||
impl From<Pixels> for usize {
|
||
fn from(pixels: Pixels) -> Self {
|
||
pixels.0 as usize
|
||
}
|
||
}
|
||
|
||
impl From<usize> for Pixels {
|
||
fn from(pixels: usize) -> Self {
|
||
Pixels(pixels as f32)
|
||
}
|
||
}
|
||
|
||
/// Represents physical pixels on the display.
|
||
///
|
||
/// `DevicePixels` is a unit of measurement that refers to the actual pixels on a device's screen.
|
||
/// This type is used when precise pixel manipulation is required, such as rendering graphics or
|
||
/// interfacing with hardware that operates on the pixel level. Unlike logical pixels that may be
|
||
/// affected by the device's scale factor, `DevicePixels` always correspond to real pixels on the
|
||
/// display.
|
||
#[derive(
|
||
Add, AddAssign, Clone, Copy, Default, Div, Eq, Hash, Ord, PartialEq, PartialOrd, Sub, SubAssign,
|
||
)]
|
||
#[repr(transparent)]
|
||
pub struct DevicePixels(pub(crate) i32);
|
||
|
||
impl DevicePixels {
|
||
/// Converts the `DevicePixels` value to the number of bytes needed to represent it in memory.
|
||
///
|
||
/// This function is useful when working with graphical data that needs to be stored in a buffer,
|
||
/// such as images or framebuffers, where each pixel may be represented by a specific number of bytes.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `bytes_per_pixel` - The number of bytes used to represent a single pixel.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// The number of bytes required to represent the `DevicePixels` value in memory.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::DevicePixels;
|
||
/// let pixels = DevicePixels(10); // 10 device pixels
|
||
/// let bytes_per_pixel = 4; // Assume each pixel is represented by 4 bytes (e.g., RGBA)
|
||
/// let total_bytes = pixels.to_bytes(bytes_per_pixel);
|
||
/// assert_eq!(total_bytes, 40); // 10 pixels * 4 bytes/pixel = 40 bytes
|
||
/// ```
|
||
pub fn to_bytes(&self, bytes_per_pixel: u8) -> u32 {
|
||
self.0 as u32 * bytes_per_pixel as u32
|
||
}
|
||
}
|
||
|
||
impl fmt::Debug for DevicePixels {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
write!(f, "{} px (device)", self.0)
|
||
}
|
||
}
|
||
|
||
impl From<DevicePixels> for i32 {
|
||
fn from(device_pixels: DevicePixels) -> Self {
|
||
device_pixels.0
|
||
}
|
||
}
|
||
|
||
impl From<i32> for DevicePixels {
|
||
fn from(device_pixels: i32) -> Self {
|
||
DevicePixels(device_pixels)
|
||
}
|
||
}
|
||
|
||
impl From<u32> for DevicePixels {
|
||
fn from(device_pixels: u32) -> Self {
|
||
DevicePixels(device_pixels as i32)
|
||
}
|
||
}
|
||
|
||
impl From<DevicePixels> for u32 {
|
||
fn from(device_pixels: DevicePixels) -> Self {
|
||
device_pixels.0 as u32
|
||
}
|
||
}
|
||
|
||
impl From<DevicePixels> for u64 {
|
||
fn from(device_pixels: DevicePixels) -> Self {
|
||
device_pixels.0 as u64
|
||
}
|
||
}
|
||
|
||
impl From<u64> for DevicePixels {
|
||
fn from(device_pixels: u64) -> Self {
|
||
DevicePixels(device_pixels as i32)
|
||
}
|
||
}
|
||
|
||
impl From<DevicePixels> for usize {
|
||
fn from(device_pixels: DevicePixels) -> Self {
|
||
device_pixels.0 as usize
|
||
}
|
||
}
|
||
|
||
impl From<usize> for DevicePixels {
|
||
fn from(device_pixels: usize) -> Self {
|
||
DevicePixels(device_pixels as i32)
|
||
}
|
||
}
|
||
|
||
/// Represents scaled pixels that take into account the device's scale factor.
|
||
///
|
||
/// `ScaledPixels` are used to ensure that UI elements appear at the correct size on devices
|
||
/// with different pixel densities. When a device has a higher scale factor (such as Retina displays),
|
||
/// a single logical pixel may correspond to multiple physical pixels. By using `ScaledPixels`,
|
||
/// dimensions and positions can be specified in a way that scales appropriately across different
|
||
/// display resolutions.
|
||
#[derive(Clone, Copy, Default, Add, AddAssign, Sub, SubAssign, Div, PartialEq, PartialOrd)]
|
||
#[repr(transparent)]
|
||
pub struct ScaledPixels(pub(crate) f32);
|
||
|
||
impl ScaledPixels {
|
||
/// Floors the `ScaledPixels` value to the nearest whole number.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `ScaledPixels` instance with the floored value.
|
||
pub fn floor(&self) -> Self {
|
||
Self(self.0.floor())
|
||
}
|
||
|
||
/// Rounds the `ScaledPixels` value to the nearest whole number.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns a new `ScaledPixels` instance with the rounded value.
|
||
pub fn ceil(&self) -> Self {
|
||
Self(self.0.ceil())
|
||
}
|
||
}
|
||
|
||
impl Eq for ScaledPixels {}
|
||
|
||
impl Debug for ScaledPixels {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
write!(f, "{} px (scaled)", self.0)
|
||
}
|
||
}
|
||
|
||
impl From<ScaledPixels> for DevicePixels {
|
||
fn from(scaled: ScaledPixels) -> Self {
|
||
DevicePixels(scaled.0.ceil() as i32)
|
||
}
|
||
}
|
||
|
||
impl From<DevicePixels> for ScaledPixels {
|
||
fn from(device: DevicePixels) -> Self {
|
||
ScaledPixels(device.0 as f32)
|
||
}
|
||
}
|
||
|
||
impl From<ScaledPixels> for f64 {
|
||
fn from(scaled_pixels: ScaledPixels) -> Self {
|
||
scaled_pixels.0 as f64
|
||
}
|
||
}
|
||
|
||
/// Represents a length in rems, a unit based on the font-size of the window, which can be assigned with [`WindowContext::set_rem_size`][set_rem_size].
|
||
///
|
||
/// Rems are used for defining lengths that are scalable and consistent across different UI elements.
|
||
/// The value of `1rem` is typically equal to the font-size of the root element (often the `<html>` element in browsers),
|
||
/// making it a flexible unit that adapts to the user's text size preferences. In this framework, `rems` serve a similar
|
||
/// purpose, allowing for scalable and accessible design that can adjust to different display settings or user preferences.
|
||
///
|
||
/// For example, if the root element's font-size is `16px`, then `1rem` equals `16px`. A length of `2rems` would then be `32px`.
|
||
///
|
||
/// [set_rem_size]: crate::WindowContext::set_rem_size
|
||
#[derive(Clone, Copy, Default, Add, Sub, Mul, Div, Neg, PartialEq)]
|
||
pub struct Rems(pub f32);
|
||
|
||
impl Rems {
|
||
/// Convert this Rem value to pixels.
|
||
pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
|
||
*self * rem_size
|
||
}
|
||
}
|
||
|
||
impl Mul<Pixels> for Rems {
|
||
type Output = Pixels;
|
||
|
||
fn mul(self, other: Pixels) -> Pixels {
|
||
Pixels(self.0 * other.0)
|
||
}
|
||
}
|
||
|
||
impl Debug for Rems {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
write!(f, "{} rem", self.0)
|
||
}
|
||
}
|
||
|
||
/// Represents an absolute length in pixels or rems.
|
||
///
|
||
/// `AbsoluteLength` can be either a fixed number of pixels, which is an absolute measurement not
|
||
/// affected by the current font size, or a number of rems, which is relative to the font size of
|
||
/// the root element. It is used for specifying dimensions that are either independent of or
|
||
/// related to the typographic scale.
|
||
#[derive(Clone, Copy, Debug, Neg, PartialEq)]
|
||
pub enum AbsoluteLength {
|
||
/// A length in pixels.
|
||
Pixels(Pixels),
|
||
/// A length in rems.
|
||
Rems(Rems),
|
||
}
|
||
|
||
impl AbsoluteLength {
|
||
/// Checks if the absolute length is zero.
|
||
pub fn is_zero(&self) -> bool {
|
||
match self {
|
||
AbsoluteLength::Pixels(px) => px.0 == 0.0,
|
||
AbsoluteLength::Rems(rems) => rems.0 == 0.0,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl From<Pixels> for AbsoluteLength {
|
||
fn from(pixels: Pixels) -> Self {
|
||
AbsoluteLength::Pixels(pixels)
|
||
}
|
||
}
|
||
|
||
impl From<Rems> for AbsoluteLength {
|
||
fn from(rems: Rems) -> Self {
|
||
AbsoluteLength::Rems(rems)
|
||
}
|
||
}
|
||
|
||
impl AbsoluteLength {
|
||
/// Converts an `AbsoluteLength` to `Pixels` based on a given `rem_size`.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `rem_size` - The size of one rem in pixels.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns the `AbsoluteLength` as `Pixels`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{AbsoluteLength, Pixels};
|
||
/// let length_in_pixels = AbsoluteLength::Pixels(Pixels(42.0));
|
||
/// let length_in_rems = AbsoluteLength::Rems(Rems(2.0));
|
||
/// let rem_size = Pixels(16.0);
|
||
///
|
||
/// assert_eq!(length_in_pixels.to_pixels(rem_size), Pixels(42.0));
|
||
/// assert_eq!(length_in_rems.to_pixels(rem_size), Pixels(32.0));
|
||
/// ```
|
||
pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
|
||
match self {
|
||
AbsoluteLength::Pixels(pixels) => *pixels,
|
||
AbsoluteLength::Rems(rems) => rems.to_pixels(rem_size),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Default for AbsoluteLength {
|
||
fn default() -> Self {
|
||
px(0.).into()
|
||
}
|
||
}
|
||
|
||
/// A non-auto length that can be defined in pixels, rems, or percent of parent.
|
||
///
|
||
/// This enum represents lengths that have a specific value, as opposed to lengths that are automatically
|
||
/// determined by the context. It includes absolute lengths in pixels or rems, and relative lengths as a
|
||
/// fraction of the parent's size.
|
||
#[derive(Clone, Copy, Neg, PartialEq)]
|
||
pub enum DefiniteLength {
|
||
/// An absolute length specified in pixels or rems.
|
||
Absolute(AbsoluteLength),
|
||
/// A relative length specified as a fraction of the parent's size, between 0 and 1.
|
||
Fraction(f32),
|
||
}
|
||
|
||
impl DefiniteLength {
|
||
/// Converts the `DefiniteLength` to `Pixels` based on a given `base_size` and `rem_size`.
|
||
///
|
||
/// If the `DefiniteLength` is an absolute length, it will be directly converted to `Pixels`.
|
||
/// If it is a fraction, the fraction will be multiplied by the `base_size` to get the length in pixels.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `base_size` - The base size in `AbsoluteLength` to which the fraction will be applied.
|
||
/// * `rem_size` - The size of one rem in pixels, used to convert rems to pixels.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns the `DefiniteLength` as `Pixels`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # use zed::{DefiniteLength, AbsoluteLength, Pixels, px, rems};
|
||
/// let length_in_pixels = DefiniteLength::Absolute(AbsoluteLength::Pixels(px(42.0)));
|
||
/// let length_in_rems = DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0)));
|
||
/// let length_as_fraction = DefiniteLength::Fraction(0.5);
|
||
/// let base_size = AbsoluteLength::Pixels(px(100.0));
|
||
/// let rem_size = px(16.0);
|
||
///
|
||
/// assert_eq!(length_in_pixels.to_pixels(base_size, rem_size), Pixels(42.0));
|
||
/// assert_eq!(length_in_rems.to_pixels(base_size, rem_size), Pixels(32.0));
|
||
/// assert_eq!(length_as_fraction.to_pixels(base_size, rem_size), Pixels(50.0));
|
||
/// ```
|
||
pub fn to_pixels(&self, base_size: AbsoluteLength, rem_size: Pixels) -> Pixels {
|
||
match self {
|
||
DefiniteLength::Absolute(size) => size.to_pixels(rem_size),
|
||
DefiniteLength::Fraction(fraction) => match base_size {
|
||
AbsoluteLength::Pixels(px) => px * *fraction,
|
||
AbsoluteLength::Rems(rems) => rems * rem_size * *fraction,
|
||
},
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Debug for DefiniteLength {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
match self {
|
||
DefiniteLength::Absolute(length) => Debug::fmt(length, f),
|
||
DefiniteLength::Fraction(fract) => write!(f, "{}%", (fract * 100.0) as i32),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl From<Pixels> for DefiniteLength {
|
||
fn from(pixels: Pixels) -> Self {
|
||
Self::Absolute(pixels.into())
|
||
}
|
||
}
|
||
|
||
impl From<Rems> for DefiniteLength {
|
||
fn from(rems: Rems) -> Self {
|
||
Self::Absolute(rems.into())
|
||
}
|
||
}
|
||
|
||
impl From<AbsoluteLength> for DefiniteLength {
|
||
fn from(length: AbsoluteLength) -> Self {
|
||
Self::Absolute(length)
|
||
}
|
||
}
|
||
|
||
impl Default for DefiniteLength {
|
||
fn default() -> Self {
|
||
Self::Absolute(AbsoluteLength::default())
|
||
}
|
||
}
|
||
|
||
/// A length that can be defined in pixels, rems, percent of parent, or auto.
|
||
#[derive(Clone, Copy)]
|
||
pub enum Length {
|
||
/// A definite length specified either in pixels, rems, or as a fraction of the parent's size.
|
||
Definite(DefiniteLength),
|
||
/// An automatic length that is determined by the context in which it is used.
|
||
Auto,
|
||
}
|
||
|
||
impl Debug for Length {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
match self {
|
||
Length::Definite(definite_length) => write!(f, "{:?}", definite_length),
|
||
Length::Auto => write!(f, "auto"),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Constructs a `DefiniteLength` representing a relative fraction of a parent size.
|
||
///
|
||
/// This function creates a `DefiniteLength` that is a specified fraction of a parent's dimension.
|
||
/// The fraction should be a floating-point number between 0.0 and 1.0, where 1.0 represents 100% of the parent's size.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `fraction` - The fraction of the parent's size, between 0.0 and 1.0.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `DefiniteLength` representing the relative length as a fraction of the parent's size.
|
||
pub fn relative(fraction: f32) -> DefiniteLength {
|
||
DefiniteLength::Fraction(fraction)
|
||
}
|
||
|
||
/// Returns the Golden Ratio, i.e. `~(1.0 + sqrt(5.0)) / 2.0`.
|
||
pub fn phi() -> DefiniteLength {
|
||
relative(1.618_034)
|
||
}
|
||
|
||
/// Constructs a `Rems` value representing a length in rems.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `rems` - The number of rems for the length.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Rems` representing the specified number of rems.
|
||
pub fn rems(rems: f32) -> Rems {
|
||
Rems(rems)
|
||
}
|
||
|
||
/// Constructs a `Pixels` value representing a length in pixels.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `pixels` - The number of pixels for the length.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Pixels` representing the specified number of pixels.
|
||
pub const fn px(pixels: f32) -> Pixels {
|
||
Pixels(pixels)
|
||
}
|
||
|
||
/// Returns a `Length` representing an automatic length.
|
||
///
|
||
/// The `auto` length is often used in layout calculations where the length should be determined
|
||
/// by the layout context itself rather than being explicitly set. This is commonly used in CSS
|
||
/// for properties like `width`, `height`, `margin`, `padding`, etc., where `auto` can be used
|
||
/// to instruct the layout engine to calculate the size based on other factors like the size of the
|
||
/// container or the intrinsic size of the content.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A `Length` variant set to `Auto`.
|
||
pub fn auto() -> Length {
|
||
Length::Auto
|
||
}
|
||
|
||
impl From<Pixels> for Length {
|
||
fn from(pixels: Pixels) -> Self {
|
||
Self::Definite(pixels.into())
|
||
}
|
||
}
|
||
|
||
impl From<Rems> for Length {
|
||
fn from(rems: Rems) -> Self {
|
||
Self::Definite(rems.into())
|
||
}
|
||
}
|
||
|
||
impl From<DefiniteLength> for Length {
|
||
fn from(length: DefiniteLength) -> Self {
|
||
Self::Definite(length)
|
||
}
|
||
}
|
||
|
||
impl From<AbsoluteLength> for Length {
|
||
fn from(length: AbsoluteLength) -> Self {
|
||
Self::Definite(length.into())
|
||
}
|
||
}
|
||
|
||
impl Default for Length {
|
||
fn default() -> Self {
|
||
Self::Definite(DefiniteLength::default())
|
||
}
|
||
}
|
||
|
||
impl From<()> for Length {
|
||
fn from(_: ()) -> Self {
|
||
Self::Definite(DefiniteLength::default())
|
||
}
|
||
}
|
||
|
||
/// Provides a trait for types that can calculate half of their value.
|
||
///
|
||
/// The `Half` trait is used for types that can be evenly divided, returning a new instance of the same type
|
||
/// representing half of the original value. This is commonly used for types that represent measurements or sizes,
|
||
/// such as lengths or pixels, where halving is a frequent operation during layout calculations or animations.
|
||
pub trait Half {
|
||
/// Returns half of the current value.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// A new instance of the implementing type, representing half of the original value.
|
||
fn half(&self) -> Self;
|
||
}
|
||
|
||
impl Half for i32 {
|
||
fn half(&self) -> Self {
|
||
self / 2
|
||
}
|
||
}
|
||
|
||
impl Half for f32 {
|
||
fn half(&self) -> Self {
|
||
self / 2.
|
||
}
|
||
}
|
||
|
||
impl Half for DevicePixels {
|
||
fn half(&self) -> Self {
|
||
Self(self.0 / 2)
|
||
}
|
||
}
|
||
|
||
impl Half for ScaledPixels {
|
||
fn half(&self) -> Self {
|
||
Self(self.0 / 2.)
|
||
}
|
||
}
|
||
|
||
impl Half for Pixels {
|
||
fn half(&self) -> Self {
|
||
Self(self.0 / 2.)
|
||
}
|
||
}
|
||
|
||
impl Half for Rems {
|
||
fn half(&self) -> Self {
|
||
Self(self.0 / 2.)
|
||
}
|
||
}
|
||
|
||
/// Provides a trait for types that can negate their values.
|
||
pub trait Negate {
|
||
/// Returns the negation of the given value
|
||
fn negate(self) -> Self;
|
||
}
|
||
|
||
impl Negate for i32 {
|
||
fn negate(self) -> Self {
|
||
-self
|
||
}
|
||
}
|
||
|
||
impl Negate for f32 {
|
||
fn negate(self) -> Self {
|
||
-self
|
||
}
|
||
}
|
||
|
||
impl Negate for DevicePixels {
|
||
fn negate(self) -> Self {
|
||
Self(-self.0)
|
||
}
|
||
}
|
||
|
||
impl Negate for ScaledPixels {
|
||
fn negate(self) -> Self {
|
||
Self(-self.0)
|
||
}
|
||
}
|
||
|
||
impl Negate for Pixels {
|
||
fn negate(self) -> Self {
|
||
Self(-self.0)
|
||
}
|
||
}
|
||
|
||
impl Negate for Rems {
|
||
fn negate(self) -> Self {
|
||
Self(-self.0)
|
||
}
|
||
}
|
||
|
||
/// A trait for checking if a value is zero.
|
||
///
|
||
/// This trait provides a method to determine if a value is considered to be zero.
|
||
/// It is implemented for various numeric and length-related types where the concept
|
||
/// of zero is applicable. This can be useful for comparisons, optimizations, or
|
||
/// determining if an operation has a neutral effect.
|
||
pub trait IsZero {
|
||
/// Determines if the value is zero.
|
||
///
|
||
/// # Returns
|
||
///
|
||
/// Returns `true` if the value is zero, `false` otherwise.
|
||
fn is_zero(&self) -> bool;
|
||
}
|
||
|
||
impl IsZero for DevicePixels {
|
||
fn is_zero(&self) -> bool {
|
||
self.0 == 0
|
||
}
|
||
}
|
||
|
||
impl IsZero for ScaledPixels {
|
||
fn is_zero(&self) -> bool {
|
||
self.0 == 0.
|
||
}
|
||
}
|
||
|
||
impl IsZero for Pixels {
|
||
fn is_zero(&self) -> bool {
|
||
self.0 == 0.
|
||
}
|
||
}
|
||
|
||
impl IsZero for Rems {
|
||
fn is_zero(&self) -> bool {
|
||
self.0 == 0.
|
||
}
|
||
}
|
||
|
||
impl IsZero for AbsoluteLength {
|
||
fn is_zero(&self) -> bool {
|
||
match self {
|
||
AbsoluteLength::Pixels(pixels) => pixels.is_zero(),
|
||
AbsoluteLength::Rems(rems) => rems.is_zero(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl IsZero for DefiniteLength {
|
||
fn is_zero(&self) -> bool {
|
||
match self {
|
||
DefiniteLength::Absolute(length) => length.is_zero(),
|
||
DefiniteLength::Fraction(fraction) => *fraction == 0.,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl IsZero for Length {
|
||
fn is_zero(&self) -> bool {
|
||
match self {
|
||
Length::Definite(length) => length.is_zero(),
|
||
Length::Auto => false,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T: IsZero + Debug + Clone + Default> IsZero for Point<T> {
|
||
fn is_zero(&self) -> bool {
|
||
self.x.is_zero() && self.y.is_zero()
|
||
}
|
||
}
|
||
|
||
impl<T> IsZero for Size<T>
|
||
where
|
||
T: IsZero + Default + Debug + Clone,
|
||
{
|
||
fn is_zero(&self) -> bool {
|
||
self.width.is_zero() || self.height.is_zero()
|
||
}
|
||
}
|
||
|
||
impl<T: IsZero + Debug + Clone + Default> IsZero for Bounds<T> {
|
||
fn is_zero(&self) -> bool {
|
||
self.size.is_zero()
|
||
}
|
||
}
|
||
|
||
impl<T> IsZero for Corners<T>
|
||
where
|
||
T: IsZero + Clone + Default + Debug,
|
||
{
|
||
fn is_zero(&self) -> bool {
|
||
self.top_left.is_zero()
|
||
&& self.top_right.is_zero()
|
||
&& self.bottom_right.is_zero()
|
||
&& self.bottom_left.is_zero()
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use super::*;
|
||
|
||
#[test]
|
||
fn test_bounds_intersects() {
|
||
let bounds1 = Bounds {
|
||
origin: Point { x: 0.0, y: 0.0 },
|
||
size: Size {
|
||
width: 5.0,
|
||
height: 5.0,
|
||
},
|
||
};
|
||
let bounds2 = Bounds {
|
||
origin: Point { x: 4.0, y: 4.0 },
|
||
size: Size {
|
||
width: 5.0,
|
||
height: 5.0,
|
||
},
|
||
};
|
||
let bounds3 = Bounds {
|
||
origin: Point { x: 10.0, y: 10.0 },
|
||
size: Size {
|
||
width: 5.0,
|
||
height: 5.0,
|
||
},
|
||
};
|
||
|
||
// Test Case 1: Intersecting bounds
|
||
assert_eq!(bounds1.intersects(&bounds2), true);
|
||
|
||
// Test Case 2: Non-Intersecting bounds
|
||
assert_eq!(bounds1.intersects(&bounds3), false);
|
||
|
||
// Test Case 3: Bounds intersecting with themselves
|
||
assert_eq!(bounds1.intersects(&bounds1), true);
|
||
}
|
||
}
|