zed/crates/sum_tree/src/sum_tree.rs
Nathan Sobo 49d1c9d1ba Introduce sum_tree::TreeMap<K, V>
I think this will be useful to avoid cloning HashMaps in certain cases such as snapshots.
2021-12-10 23:33:15 -07:00

1062 lines
34 KiB
Rust

mod cursor;
mod tree_map;
use arrayvec::ArrayVec;
pub use cursor::{Cursor, FilterCursor, Iter};
use std::marker::PhantomData;
use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
pub use tree_map::TreeMap;
#[cfg(test)]
const TREE_BASE: usize = 2;
#[cfg(not(test))]
const TREE_BASE: usize = 6;
pub trait Item: Clone {
type Summary: Summary;
fn summary(&self) -> Self::Summary;
}
pub trait KeyedItem: Item {
type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
fn key(&self) -> Self::Key;
}
pub trait Summary: Default + Clone + fmt::Debug {
type Context;
fn add_summary(&mut self, summary: &Self, cx: &Self::Context);
}
pub trait Dimension<'a, S: Summary>: Clone + fmt::Debug + Default {
fn add_summary(&mut self, _summary: &'a S, _: &S::Context);
fn from_summary(summary: &'a S, cx: &S::Context) -> Self {
let mut dimension = Self::default();
dimension.add_summary(summary, cx);
dimension
}
}
impl<'a, T: Summary> Dimension<'a, T> for T {
fn add_summary(&mut self, summary: &'a T, cx: &T::Context) {
Summary::add_summary(self, summary, cx);
}
}
pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>>: fmt::Debug {
fn cmp(&self, cursor_location: &D, cx: &S::Context) -> Ordering;
}
impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
fn cmp(&self, cursor_location: &Self, _: &S::Context) -> Ordering {
Ord::cmp(self, cursor_location)
}
}
impl<'a, T: Summary> Dimension<'a, T> for () {
fn add_summary(&mut self, _: &'a T, _: &T::Context) {}
}
impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>> Dimension<'a, T> for (D1, D2) {
fn add_summary(&mut self, summary: &'a T, cx: &T::Context) {
self.0.add_summary(summary, cx);
self.1.add_summary(summary, cx);
}
}
impl<'a, S: Summary, D1: SeekTarget<'a, S, D1> + Dimension<'a, S>, D2: Dimension<'a, S>>
SeekTarget<'a, S, (D1, D2)> for D1
{
fn cmp(&self, cursor_location: &(D1, D2), cx: &S::Context) -> Ordering {
self.cmp(&cursor_location.0, cx)
}
}
struct End<D>(PhantomData<D>);
impl<D> End<D> {
fn new() -> Self {
Self(PhantomData)
}
}
impl<'a, S: Summary, D: Dimension<'a, S>> SeekTarget<'a, S, D> for End<D> {
fn cmp(&self, _: &D, _: &S::Context) -> Ordering {
Ordering::Greater
}
}
impl<D> fmt::Debug for End<D> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("End").finish()
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub enum Bias {
Left,
Right,
}
impl PartialOrd for Bias {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Bias {
fn cmp(&self, other: &Self) -> Ordering {
match (self, other) {
(Self::Left, Self::Left) => Ordering::Equal,
(Self::Left, Self::Right) => Ordering::Less,
(Self::Right, Self::Right) => Ordering::Equal,
(Self::Right, Self::Left) => Ordering::Greater,
}
}
}
#[derive(Debug, Clone)]
pub struct SumTree<T: Item>(Arc<Node<T>>);
impl<T: Item> SumTree<T> {
pub fn new() -> Self {
SumTree(Arc::new(Node::Leaf {
summary: T::Summary::default(),
items: ArrayVec::new(),
item_summaries: ArrayVec::new(),
}))
}
pub fn from_item(item: T, cx: &<T::Summary as Summary>::Context) -> Self {
let mut tree = Self::new();
tree.push(item, cx);
tree
}
pub fn from_iter<I: IntoIterator<Item = T>>(
iter: I,
cx: &<T::Summary as Summary>::Context,
) -> Self {
let mut tree = Self::new();
tree.extend(iter, cx);
tree
}
#[allow(unused)]
pub fn items(&self, cx: &<T::Summary as Summary>::Context) -> Vec<T> {
let mut items = Vec::new();
let mut cursor = self.cursor::<()>();
cursor.next(cx);
while let Some(item) = cursor.item() {
items.push(item.clone());
cursor.next(cx);
}
items
}
pub fn iter(&self) -> Iter<T> {
Iter::new(self)
}
pub fn cursor<'a, S>(&'a self) -> Cursor<T, S>
where
S: Dimension<'a, T::Summary>,
{
Cursor::new(self)
}
pub fn filter<'a, F, U>(
&'a self,
filter_node: F,
cx: &<T::Summary as Summary>::Context,
) -> FilterCursor<F, T, U>
where
F: FnMut(&T::Summary) -> bool,
U: Dimension<'a, T::Summary>,
{
FilterCursor::new(self, filter_node, cx)
}
#[allow(dead_code)]
pub fn first(&self) -> Option<&T> {
self.leftmost_leaf().0.items().first()
}
pub fn last(&self) -> Option<&T> {
self.rightmost_leaf().0.items().last()
}
pub fn update_last(&mut self, f: impl FnOnce(&mut T), cx: &<T::Summary as Summary>::Context) {
self.update_last_recursive(f, cx);
}
fn update_last_recursive(
&mut self,
f: impl FnOnce(&mut T),
cx: &<T::Summary as Summary>::Context,
) -> Option<T::Summary> {
match Arc::make_mut(&mut self.0) {
Node::Internal {
summary,
child_summaries,
child_trees,
..
} => {
let last_summary = child_summaries.last_mut().unwrap();
let last_child = child_trees.last_mut().unwrap();
*last_summary = last_child.update_last_recursive(f, cx).unwrap();
*summary = sum(child_summaries.iter(), cx);
Some(summary.clone())
}
Node::Leaf {
summary,
items,
item_summaries,
} => {
if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
{
(f)(item);
*item_summary = item.summary();
*summary = sum(item_summaries.iter(), cx);
Some(summary.clone())
} else {
None
}
}
}
}
pub fn extent<'a, D: Dimension<'a, T::Summary>>(
&'a self,
cx: &<T::Summary as Summary>::Context,
) -> D {
let mut extent = D::default();
match self.0.as_ref() {
Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
extent.add_summary(summary, cx);
}
}
extent
}
pub fn summary(&self) -> T::Summary {
match self.0.as_ref() {
Node::Internal { summary, .. } => summary.clone(),
Node::Leaf { summary, .. } => summary.clone(),
}
}
pub fn is_empty(&self) -> bool {
match self.0.as_ref() {
Node::Internal { .. } => false,
Node::Leaf { items, .. } => items.is_empty(),
}
}
pub fn extend<I>(&mut self, iter: I, cx: &<T::Summary as Summary>::Context)
where
I: IntoIterator<Item = T>,
{
let mut leaf: Option<Node<T>> = None;
for item in iter {
if leaf.is_some() && leaf.as_ref().unwrap().items().len() == 2 * TREE_BASE {
self.push_tree(SumTree(Arc::new(leaf.take().unwrap())), cx);
}
if leaf.is_none() {
leaf = Some(Node::Leaf::<T> {
summary: T::Summary::default(),
items: ArrayVec::new(),
item_summaries: ArrayVec::new(),
});
}
if let Some(Node::Leaf {
summary,
items,
item_summaries,
}) = leaf.as_mut()
{
let item_summary = item.summary();
<T::Summary as Summary>::add_summary(summary, &item_summary, cx);
items.push(item);
item_summaries.push(item_summary);
} else {
unreachable!()
}
}
if leaf.is_some() {
self.push_tree(SumTree(Arc::new(leaf.take().unwrap())), cx);
}
}
pub fn push(&mut self, item: T, cx: &<T::Summary as Summary>::Context) {
let summary = item.summary();
self.push_tree(
SumTree(Arc::new(Node::Leaf {
summary: summary.clone(),
items: ArrayVec::from_iter(Some(item)),
item_summaries: ArrayVec::from_iter(Some(summary)),
})),
cx,
);
}
pub fn push_tree(&mut self, other: Self, cx: &<T::Summary as Summary>::Context) {
if !other.0.is_leaf() || other.0.items().len() > 0 {
if self.0.height() < other.0.height() {
for tree in other.0.child_trees() {
self.push_tree(tree.clone(), cx);
}
} else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
*self = Self::from_child_trees(self.clone(), split_tree, cx);
}
}
}
fn push_tree_recursive(
&mut self,
other: SumTree<T>,
cx: &<T::Summary as Summary>::Context,
) -> Option<SumTree<T>> {
match Arc::make_mut(&mut self.0) {
Node::Internal {
height,
summary,
child_summaries,
child_trees,
..
} => {
let other_node = other.0.clone();
<T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
let height_delta = *height - other_node.height();
let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
if height_delta == 0 {
summaries_to_append.extend(other_node.child_summaries().iter().cloned());
trees_to_append.extend(other_node.child_trees().iter().cloned());
} else if height_delta == 1 && !other_node.is_underflowing() {
summaries_to_append.push(other_node.summary().clone());
trees_to_append.push(other)
} else {
let tree_to_append = child_trees
.last_mut()
.unwrap()
.push_tree_recursive(other, cx);
*child_summaries.last_mut().unwrap() =
child_trees.last().unwrap().0.summary().clone();
if let Some(split_tree) = tree_to_append {
summaries_to_append.push(split_tree.0.summary().clone());
trees_to_append.push(split_tree);
}
}
let child_count = child_trees.len() + trees_to_append.len();
if child_count > 2 * TREE_BASE {
let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
let left_trees;
let right_trees;
let midpoint = (child_count + child_count % 2) / 2;
{
let mut all_summaries = child_summaries
.iter()
.chain(summaries_to_append.iter())
.cloned();
left_summaries = all_summaries.by_ref().take(midpoint).collect();
right_summaries = all_summaries.collect();
let mut all_trees =
child_trees.iter().chain(trees_to_append.iter()).cloned();
left_trees = all_trees.by_ref().take(midpoint).collect();
right_trees = all_trees.collect();
}
*summary = sum(left_summaries.iter(), cx);
*child_summaries = left_summaries;
*child_trees = left_trees;
Some(SumTree(Arc::new(Node::Internal {
height: *height,
summary: sum(right_summaries.iter(), cx),
child_summaries: right_summaries,
child_trees: right_trees,
})))
} else {
child_summaries.extend(summaries_to_append);
child_trees.extend(trees_to_append);
None
}
}
Node::Leaf {
summary,
items,
item_summaries,
} => {
let other_node = other.0;
let child_count = items.len() + other_node.items().len();
if child_count > 2 * TREE_BASE {
let left_items;
let right_items;
let left_summaries;
let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
let midpoint = (child_count + child_count % 2) / 2;
{
let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
left_items = all_items.by_ref().take(midpoint).collect();
right_items = all_items.collect();
let mut all_summaries = item_summaries
.iter()
.chain(other_node.child_summaries())
.cloned();
left_summaries = all_summaries.by_ref().take(midpoint).collect();
right_summaries = all_summaries.collect();
}
*items = left_items;
*item_summaries = left_summaries;
*summary = sum(item_summaries.iter(), cx);
Some(SumTree(Arc::new(Node::Leaf {
items: right_items,
summary: sum(right_summaries.iter(), cx),
item_summaries: right_summaries,
})))
} else {
<T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
items.extend(other_node.items().iter().cloned());
item_summaries.extend(other_node.child_summaries().iter().cloned());
None
}
}
}
}
fn from_child_trees(
left: SumTree<T>,
right: SumTree<T>,
cx: &<T::Summary as Summary>::Context,
) -> Self {
let height = left.0.height() + 1;
let mut child_summaries = ArrayVec::new();
child_summaries.push(left.0.summary().clone());
child_summaries.push(right.0.summary().clone());
let mut child_trees = ArrayVec::new();
child_trees.push(left);
child_trees.push(right);
SumTree(Arc::new(Node::Internal {
height,
summary: sum(child_summaries.iter(), cx),
child_summaries,
child_trees,
}))
}
fn leftmost_leaf(&self) -> &Self {
match *self.0 {
Node::Leaf { .. } => self,
Node::Internal {
ref child_trees, ..
} => child_trees.first().unwrap().leftmost_leaf(),
}
}
fn rightmost_leaf(&self) -> &Self {
match *self.0 {
Node::Leaf { .. } => self,
Node::Internal {
ref child_trees, ..
} => child_trees.last().unwrap().rightmost_leaf(),
}
}
}
impl<T: KeyedItem> SumTree<T> {
pub fn insert_or_replace(&mut self, item: T, cx: &<T::Summary as Summary>::Context) -> bool {
let mut replaced = false;
*self = {
let mut cursor = self.cursor::<T::Key>();
let mut new_tree = cursor.slice(&item.key(), Bias::Left, cx);
if cursor
.item()
.map_or(false, |cursor_item| cursor_item.key() == item.key())
{
cursor.next(cx);
replaced = true;
}
new_tree.push(item, cx);
new_tree.push_tree(cursor.suffix(cx), cx);
new_tree
};
replaced
}
pub fn edit(
&mut self,
mut edits: Vec<Edit<T>>,
cx: &<T::Summary as Summary>::Context,
) -> Vec<T> {
if edits.is_empty() {
return Vec::new();
}
let mut removed = Vec::new();
edits.sort_unstable_by_key(|item| item.key());
*self = {
let mut cursor = self.cursor::<T::Key>();
let mut new_tree = SumTree::new();
let mut buffered_items = Vec::new();
cursor.seek(&T::Key::default(), Bias::Left, cx);
for edit in edits {
let new_key = edit.key();
let mut old_item = cursor.item();
if old_item
.as_ref()
.map_or(false, |old_item| old_item.key() < new_key)
{
new_tree.extend(buffered_items.drain(..), cx);
let slice = cursor.slice(&new_key, Bias::Left, cx);
new_tree.push_tree(slice, cx);
old_item = cursor.item();
}
if let Some(old_item) = old_item {
if old_item.key() == new_key {
removed.push(old_item.clone());
cursor.next(cx);
}
}
match edit {
Edit::Insert(item) => {
buffered_items.push(item);
}
Edit::Remove(_) => {}
}
}
new_tree.extend(buffered_items, cx);
new_tree.push_tree(cursor.suffix(cx), cx);
new_tree
};
removed
}
pub fn get(&self, key: &T::Key, cx: &<T::Summary as Summary>::Context) -> Option<&T> {
let mut cursor = self.cursor::<T::Key>();
if cursor.seek(key, Bias::Left, cx) {
cursor.item()
} else {
None
}
}
}
impl<T: Item> Default for SumTree<T> {
fn default() -> Self {
Self::new()
}
}
#[derive(Clone, Debug)]
pub enum Node<T: Item> {
Internal {
height: u8,
summary: T::Summary,
child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
},
Leaf {
summary: T::Summary,
items: ArrayVec<T, { 2 * TREE_BASE }>,
item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
},
}
impl<T: Item> Node<T> {
fn is_leaf(&self) -> bool {
match self {
Node::Leaf { .. } => true,
_ => false,
}
}
fn height(&self) -> u8 {
match self {
Node::Internal { height, .. } => *height,
Node::Leaf { .. } => 0,
}
}
fn summary(&self) -> &T::Summary {
match self {
Node::Internal { summary, .. } => summary,
Node::Leaf { summary, .. } => summary,
}
}
fn child_summaries(&self) -> &[T::Summary] {
match self {
Node::Internal {
child_summaries, ..
} => child_summaries.as_slice(),
Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
}
}
fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
match self {
Node::Internal { child_trees, .. } => child_trees,
Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
}
}
fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
match self {
Node::Leaf { items, .. } => items,
Node::Internal { .. } => panic!("Internal nodes have no items"),
}
}
fn is_underflowing(&self) -> bool {
match self {
Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
Node::Leaf { items, .. } => items.len() < TREE_BASE,
}
}
}
#[derive(Debug)]
pub enum Edit<T: KeyedItem> {
Insert(T),
Remove(T::Key),
}
impl<T: KeyedItem> Edit<T> {
fn key(&self) -> T::Key {
match self {
Edit::Insert(item) => item.key(),
Edit::Remove(key) => key.clone(),
}
}
}
fn sum<'a, T, I>(iter: I, cx: &T::Context) -> T
where
T: 'a + Summary,
I: Iterator<Item = &'a T>,
{
let mut sum = T::default();
for value in iter {
sum.add_summary(value, cx);
}
sum
}
#[cfg(test)]
mod tests {
use super::*;
use rand::{distributions, prelude::*};
use std::cmp;
#[test]
fn test_extend_and_push_tree() {
let mut tree1 = SumTree::new();
tree1.extend(0..20, &());
let mut tree2 = SumTree::new();
tree2.extend(50..100, &());
tree1.push_tree(tree2, &());
assert_eq!(
tree1.items(&()),
(0..20).chain(50..100).collect::<Vec<u8>>()
);
}
#[test]
fn test_random() {
let mut starting_seed = 0;
if let Ok(value) = std::env::var("SEED") {
starting_seed = value.parse().expect("invalid SEED variable");
}
let mut num_iterations = 100;
if let Ok(value) = std::env::var("ITERATIONS") {
num_iterations = value.parse().expect("invalid ITERATIONS variable");
}
for seed in starting_seed..(starting_seed + num_iterations) {
let mut rng = StdRng::seed_from_u64(seed);
let rng = &mut rng;
let mut tree = SumTree::<u8>::new();
let count = rng.gen_range(0..10);
tree.extend(rng.sample_iter(distributions::Standard).take(count), &());
for _ in 0..5 {
let splice_end = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
let splice_start = rng.gen_range(0..splice_end + 1);
let count = rng.gen_range(0..3);
let tree_end = tree.extent::<Count>(&());
let new_items = rng
.sample_iter(distributions::Standard)
.take(count)
.collect::<Vec<u8>>();
let mut reference_items = tree.items(&());
reference_items.splice(splice_start..splice_end, new_items.clone());
tree = {
let mut cursor = tree.cursor::<Count>();
let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right, &());
new_tree.extend(new_items, &());
cursor.seek(&Count(splice_end), Bias::Right, &());
new_tree.push_tree(cursor.slice(&tree_end, Bias::Right, &()), &());
new_tree
};
assert_eq!(tree.items(&()), reference_items);
assert_eq!(
tree.iter().collect::<Vec<_>>(),
tree.cursor::<()>().collect::<Vec<_>>()
);
let mut filter_cursor =
tree.filter::<_, Count>(|summary| summary.contains_even, &());
let mut reference_filter = tree
.items(&())
.into_iter()
.enumerate()
.filter(|(_, item)| (item & 1) == 0);
while let Some(actual_item) = filter_cursor.item() {
let (reference_index, reference_item) = reference_filter.next().unwrap();
assert_eq!(actual_item, &reference_item);
assert_eq!(filter_cursor.start().0, reference_index);
filter_cursor.next(&());
}
assert!(reference_filter.next().is_none());
let mut pos = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
let mut before_start = false;
let mut cursor = tree.cursor::<Count>();
cursor.seek(&Count(pos), Bias::Right, &());
for i in 0..10 {
assert_eq!(cursor.start().0, pos);
if pos > 0 {
assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
} else {
assert_eq!(cursor.prev_item(), None);
}
if pos < reference_items.len() && !before_start {
assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
} else {
assert_eq!(cursor.item(), None);
}
if i < 5 {
cursor.next(&());
if pos < reference_items.len() {
pos += 1;
before_start = false;
}
} else {
cursor.prev(&());
if pos == 0 {
before_start = true;
}
pos = pos.saturating_sub(1);
}
}
}
for _ in 0..10 {
let end = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
let start = rng.gen_range(0..end + 1);
let start_bias = if rng.gen() { Bias::Left } else { Bias::Right };
let end_bias = if rng.gen() { Bias::Left } else { Bias::Right };
let mut cursor = tree.cursor::<Count>();
cursor.seek(&Count(start), start_bias, &());
let slice = cursor.slice(&Count(end), end_bias, &());
cursor.seek(&Count(start), start_bias, &());
let summary = cursor.summary::<_, Sum>(&Count(end), end_bias, &());
assert_eq!(summary.0, slice.summary().sum);
}
}
}
#[test]
fn test_cursor() {
// Empty tree
let tree = SumTree::<u8>::new();
let mut cursor = tree.cursor::<IntegersSummary>();
assert_eq!(
cursor.slice(&Count(0), Bias::Right, &()).items(&()),
Vec::<u8>::new()
);
assert_eq!(cursor.item(), None);
assert_eq!(cursor.prev_item(), None);
assert_eq!(cursor.start().sum, 0);
// Single-element tree
let mut tree = SumTree::<u8>::new();
tree.extend(vec![1], &());
let mut cursor = tree.cursor::<IntegersSummary>();
assert_eq!(
cursor.slice(&Count(0), Bias::Right, &()).items(&()),
Vec::<u8>::new()
);
assert_eq!(cursor.item(), Some(&1));
assert_eq!(cursor.prev_item(), None);
assert_eq!(cursor.start().sum, 0);
cursor.next(&());
assert_eq!(cursor.item(), None);
assert_eq!(cursor.prev_item(), Some(&1));
assert_eq!(cursor.start().sum, 1);
cursor.prev(&());
assert_eq!(cursor.item(), Some(&1));
assert_eq!(cursor.prev_item(), None);
assert_eq!(cursor.start().sum, 0);
let mut cursor = tree.cursor::<IntegersSummary>();
assert_eq!(cursor.slice(&Count(1), Bias::Right, &()).items(&()), [1]);
assert_eq!(cursor.item(), None);
assert_eq!(cursor.prev_item(), Some(&1));
assert_eq!(cursor.start().sum, 1);
cursor.seek(&Count(0), Bias::Right, &());
assert_eq!(
cursor
.slice(&tree.extent::<Count>(&()), Bias::Right, &())
.items(&()),
[1]
);
assert_eq!(cursor.item(), None);
assert_eq!(cursor.prev_item(), Some(&1));
assert_eq!(cursor.start().sum, 1);
// Multiple-element tree
let mut tree = SumTree::new();
tree.extend(vec![1, 2, 3, 4, 5, 6], &());
let mut cursor = tree.cursor::<IntegersSummary>();
assert_eq!(cursor.slice(&Count(2), Bias::Right, &()).items(&()), [1, 2]);
assert_eq!(cursor.item(), Some(&3));
assert_eq!(cursor.prev_item(), Some(&2));
assert_eq!(cursor.start().sum, 3);
cursor.next(&());
assert_eq!(cursor.item(), Some(&4));
assert_eq!(cursor.prev_item(), Some(&3));
assert_eq!(cursor.start().sum, 6);
cursor.next(&());
assert_eq!(cursor.item(), Some(&5));
assert_eq!(cursor.prev_item(), Some(&4));
assert_eq!(cursor.start().sum, 10);
cursor.next(&());
assert_eq!(cursor.item(), Some(&6));
assert_eq!(cursor.prev_item(), Some(&5));
assert_eq!(cursor.start().sum, 15);
cursor.next(&());
cursor.next(&());
assert_eq!(cursor.item(), None);
assert_eq!(cursor.prev_item(), Some(&6));
assert_eq!(cursor.start().sum, 21);
cursor.prev(&());
assert_eq!(cursor.item(), Some(&6));
assert_eq!(cursor.prev_item(), Some(&5));
assert_eq!(cursor.start().sum, 15);
cursor.prev(&());
assert_eq!(cursor.item(), Some(&5));
assert_eq!(cursor.prev_item(), Some(&4));
assert_eq!(cursor.start().sum, 10);
cursor.prev(&());
assert_eq!(cursor.item(), Some(&4));
assert_eq!(cursor.prev_item(), Some(&3));
assert_eq!(cursor.start().sum, 6);
cursor.prev(&());
assert_eq!(cursor.item(), Some(&3));
assert_eq!(cursor.prev_item(), Some(&2));
assert_eq!(cursor.start().sum, 3);
cursor.prev(&());
assert_eq!(cursor.item(), Some(&2));
assert_eq!(cursor.prev_item(), Some(&1));
assert_eq!(cursor.start().sum, 1);
cursor.prev(&());
assert_eq!(cursor.item(), Some(&1));
assert_eq!(cursor.prev_item(), None);
assert_eq!(cursor.start().sum, 0);
cursor.prev(&());
assert_eq!(cursor.item(), None);
assert_eq!(cursor.prev_item(), None);
assert_eq!(cursor.start().sum, 0);
cursor.next(&());
assert_eq!(cursor.item(), Some(&1));
assert_eq!(cursor.prev_item(), None);
assert_eq!(cursor.start().sum, 0);
let mut cursor = tree.cursor::<IntegersSummary>();
assert_eq!(
cursor
.slice(&tree.extent::<Count>(&()), Bias::Right, &())
.items(&()),
tree.items(&())
);
assert_eq!(cursor.item(), None);
assert_eq!(cursor.prev_item(), Some(&6));
assert_eq!(cursor.start().sum, 21);
cursor.seek(&Count(3), Bias::Right, &());
assert_eq!(
cursor
.slice(&tree.extent::<Count>(&()), Bias::Right, &())
.items(&()),
[4, 5, 6]
);
assert_eq!(cursor.item(), None);
assert_eq!(cursor.prev_item(), Some(&6));
assert_eq!(cursor.start().sum, 21);
// Seeking can bias left or right
cursor.seek(&Count(1), Bias::Left, &());
assert_eq!(cursor.item(), Some(&1));
cursor.seek(&Count(1), Bias::Right, &());
assert_eq!(cursor.item(), Some(&2));
// Slicing without resetting starts from where the cursor is parked at.
cursor.seek(&Count(1), Bias::Right, &());
assert_eq!(
cursor.slice(&Count(3), Bias::Right, &()).items(&()),
vec![2, 3]
);
assert_eq!(
cursor.slice(&Count(6), Bias::Left, &()).items(&()),
vec![4, 5]
);
assert_eq!(
cursor.slice(&Count(6), Bias::Right, &()).items(&()),
vec![6]
);
}
#[test]
fn test_edit() {
let mut tree = SumTree::<u8>::new();
let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], &());
assert_eq!(tree.items(&()), vec![0, 1, 2]);
assert_eq!(removed, Vec::<u8>::new());
assert_eq!(tree.get(&0, &()), Some(&0));
assert_eq!(tree.get(&1, &()), Some(&1));
assert_eq!(tree.get(&2, &()), Some(&2));
assert_eq!(tree.get(&4, &()), None);
let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], &());
assert_eq!(tree.items(&()), vec![1, 2, 4]);
assert_eq!(removed, vec![0, 2]);
assert_eq!(tree.get(&0, &()), None);
assert_eq!(tree.get(&1, &()), Some(&1));
assert_eq!(tree.get(&2, &()), Some(&2));
assert_eq!(tree.get(&4, &()), Some(&4));
}
#[derive(Clone, Default, Debug)]
pub struct IntegersSummary {
count: usize,
sum: usize,
contains_even: bool,
max: u8,
}
#[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
struct Count(usize);
#[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
struct Sum(usize);
impl Item for u8 {
type Summary = IntegersSummary;
fn summary(&self) -> Self::Summary {
IntegersSummary {
count: 1,
sum: *self as usize,
contains_even: (*self & 1) == 0,
max: *self,
}
}
}
impl KeyedItem for u8 {
type Key = u8;
fn key(&self) -> Self::Key {
*self
}
}
impl Summary for IntegersSummary {
type Context = ();
fn add_summary(&mut self, other: &Self, _: &()) {
self.count += other.count;
self.sum += other.sum;
self.contains_even |= other.contains_even;
self.max = cmp::max(self.max, other.max);
}
}
impl<'a> Dimension<'a, IntegersSummary> for u8 {
fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
*self = summary.max;
}
}
impl<'a> Dimension<'a, IntegersSummary> for Count {
fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
self.0 += summary.count;
}
}
impl<'a> SeekTarget<'a, IntegersSummary, IntegersSummary> for Count {
fn cmp(&self, cursor_location: &IntegersSummary, _: &()) -> Ordering {
self.0.cmp(&cursor_location.count)
}
}
impl<'a> Dimension<'a, IntegersSummary> for Sum {
fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
self.0 += summary.sum;
}
}
}