zed/crates/language/src/syntax_map.rs
Max Brunsfeld a366ba19af Fix range relativization when combined injections occur inside of other injections
For example, ERB template inside of a markdown code block

Co-authored-by: Antonio Scandurra <antonio@zed.dev>
2023-03-01 14:38:35 -08:00

2754 lines
87 KiB
Rust

use crate::{Grammar, InjectionConfig, Language, LanguageRegistry};
use collections::HashMap;
use lazy_static::lazy_static;
use parking_lot::Mutex;
use std::{
borrow::Cow,
cell::RefCell,
cmp::{self, Ordering, Reverse},
collections::BinaryHeap,
iter,
ops::{Deref, DerefMut, Range},
sync::Arc,
};
use sum_tree::{Bias, SeekTarget, SumTree};
use text::{Anchor, BufferSnapshot, OffsetRangeExt, Point, Rope, ToOffset, ToPoint};
use tree_sitter::{
Node, Parser, Query, QueryCapture, QueryCaptures, QueryCursor, QueryMatches, Tree,
};
thread_local! {
static PARSER: RefCell<Parser> = RefCell::new(Parser::new());
}
lazy_static! {
static ref QUERY_CURSORS: Mutex<Vec<QueryCursor>> = Default::default();
}
#[derive(Default)]
pub struct SyntaxMap {
snapshot: SyntaxSnapshot,
language_registry: Option<Arc<LanguageRegistry>>,
}
#[derive(Clone, Default)]
pub struct SyntaxSnapshot {
layers: SumTree<SyntaxLayer>,
parsed_version: clock::Global,
interpolated_version: clock::Global,
language_registry_version: usize,
}
#[derive(Default)]
pub struct SyntaxMapCaptures<'a> {
layers: Vec<SyntaxMapCapturesLayer<'a>>,
active_layer_count: usize,
grammars: Vec<&'a Grammar>,
}
#[derive(Default)]
pub struct SyntaxMapMatches<'a> {
layers: Vec<SyntaxMapMatchesLayer<'a>>,
active_layer_count: usize,
grammars: Vec<&'a Grammar>,
}
#[derive(Debug)]
pub struct SyntaxMapCapture<'a> {
pub depth: usize,
pub node: Node<'a>,
pub index: u32,
pub grammar_index: usize,
}
#[derive(Debug)]
pub struct SyntaxMapMatch<'a> {
pub depth: usize,
pub pattern_index: usize,
pub captures: &'a [QueryCapture<'a>],
pub grammar_index: usize,
}
struct SyntaxMapCapturesLayer<'a> {
depth: usize,
captures: QueryCaptures<'a, 'a, TextProvider<'a>>,
next_capture: Option<QueryCapture<'a>>,
grammar_index: usize,
_query_cursor: QueryCursorHandle,
}
struct SyntaxMapMatchesLayer<'a> {
depth: usize,
next_pattern_index: usize,
next_captures: Vec<QueryCapture<'a>>,
has_next: bool,
matches: QueryMatches<'a, 'a, TextProvider<'a>>,
grammar_index: usize,
_query_cursor: QueryCursorHandle,
}
#[derive(Clone)]
struct SyntaxLayer {
depth: usize,
range: Range<Anchor>,
content: SyntaxLayerContent,
}
#[derive(Clone)]
enum SyntaxLayerContent {
Parsed {
tree: tree_sitter::Tree,
language: Arc<Language>,
},
Pending {
language_name: Arc<str>,
},
}
impl SyntaxLayerContent {
fn language_id(&self) -> Option<usize> {
match self {
SyntaxLayerContent::Parsed { language, .. } => language.id(),
SyntaxLayerContent::Pending { .. } => None,
}
}
fn tree(&self) -> Option<&Tree> {
match self {
SyntaxLayerContent::Parsed { tree, .. } => Some(tree),
SyntaxLayerContent::Pending { .. } => None,
}
}
}
#[derive(Debug)]
pub struct SyntaxLayerInfo<'a> {
pub depth: usize,
pub node: Node<'a>,
pub language: &'a Arc<Language>,
}
#[derive(Debug, Clone)]
struct SyntaxLayerSummary {
min_depth: usize,
max_depth: usize,
range: Range<Anchor>,
last_layer_range: Range<Anchor>,
last_layer_language: Option<usize>,
contains_unknown_injections: bool,
}
#[derive(Clone, Debug)]
struct SyntaxLayerPosition {
depth: usize,
range: Range<Anchor>,
language: Option<usize>,
}
#[derive(Clone, Debug)]
struct ChangeStartPosition {
depth: usize,
position: Anchor,
}
#[derive(Clone, Debug)]
struct SyntaxLayerPositionBeforeChange {
position: SyntaxLayerPosition,
change: ChangeStartPosition,
}
struct ParseStep {
depth: usize,
language: ParseStepLanguage,
range: Range<Anchor>,
included_ranges: Vec<tree_sitter::Range>,
mode: ParseMode,
}
#[derive(Debug)]
enum ParseStepLanguage {
Loaded { language: Arc<Language> },
Pending { name: Arc<str> },
}
impl ParseStepLanguage {
fn id(&self) -> Option<usize> {
match self {
ParseStepLanguage::Loaded { language } => language.id(),
ParseStepLanguage::Pending { .. } => None,
}
}
}
enum ParseMode {
Single,
Combined {
parent_layer_range: Range<usize>,
parent_layer_changed_ranges: Vec<Range<usize>>,
},
}
#[derive(Debug, PartialEq, Eq)]
struct ChangedRegion {
depth: usize,
range: Range<Anchor>,
}
#[derive(Default)]
struct ChangeRegionSet(Vec<ChangedRegion>);
struct TextProvider<'a>(&'a Rope);
struct ByteChunks<'a>(text::Chunks<'a>);
struct QueryCursorHandle(Option<QueryCursor>);
impl SyntaxMap {
pub fn new() -> Self {
Self::default()
}
pub fn set_language_registry(&mut self, registry: Arc<LanguageRegistry>) {
self.language_registry = Some(registry);
}
pub fn snapshot(&self) -> SyntaxSnapshot {
self.snapshot.clone()
}
pub fn language_registry(&self) -> Option<Arc<LanguageRegistry>> {
self.language_registry.clone()
}
pub fn interpolate(&mut self, text: &BufferSnapshot) {
self.snapshot.interpolate(text);
}
#[cfg(test)]
pub fn reparse(&mut self, language: Arc<Language>, text: &BufferSnapshot) {
self.snapshot
.reparse(text, self.language_registry.clone(), language);
}
pub fn did_parse(&mut self, snapshot: SyntaxSnapshot) {
self.snapshot = snapshot;
}
pub fn clear(&mut self) {
self.snapshot = SyntaxSnapshot::default();
}
}
impl SyntaxSnapshot {
pub fn is_empty(&self) -> bool {
self.layers.is_empty()
}
fn interpolate(&mut self, text: &BufferSnapshot) {
let edits = text
.anchored_edits_since::<(usize, Point)>(&self.interpolated_version)
.collect::<Vec<_>>();
self.interpolated_version = text.version().clone();
if edits.is_empty() {
return;
}
let mut layers = SumTree::new();
let mut first_edit_ix_for_depth = 0;
let mut prev_depth = 0;
let mut cursor = self.layers.cursor::<SyntaxLayerSummary>();
cursor.next(text);
'outer: loop {
let depth = cursor.end(text).max_depth;
if depth > prev_depth {
first_edit_ix_for_depth = 0;
prev_depth = depth;
}
// Preserve any layers at this depth that precede the first edit.
if let Some((_, edit_range)) = edits.get(first_edit_ix_for_depth) {
let target = ChangeStartPosition {
depth,
position: edit_range.start,
};
if target.cmp(&cursor.start(), text).is_gt() {
let slice = cursor.slice(&target, Bias::Left, text);
layers.push_tree(slice, text);
}
}
// If this layer follows all of the edits, then preserve it and any
// subsequent layers at this same depth.
else if cursor.item().is_some() {
let slice = cursor.slice(
&SyntaxLayerPosition {
depth: depth + 1,
range: Anchor::MIN..Anchor::MAX,
language: None,
},
Bias::Left,
text,
);
layers.push_tree(slice, text);
continue;
};
let Some(layer) = cursor.item() else { break };
let (start_byte, start_point) = layer.range.start.summary::<(usize, Point)>(text);
// Ignore edits that end before the start of this layer, and don't consider them
// for any subsequent layers at this same depth.
loop {
let Some((_, edit_range)) = edits.get(first_edit_ix_for_depth) else { continue 'outer };
if edit_range.end.cmp(&layer.range.start, text).is_le() {
first_edit_ix_for_depth += 1;
} else {
break;
}
}
let mut layer = layer.clone();
if let SyntaxLayerContent::Parsed { tree, .. } = &mut layer.content {
for (edit, edit_range) in &edits[first_edit_ix_for_depth..] {
// Ignore any edits that follow this layer.
if edit_range.start.cmp(&layer.range.end, text).is_ge() {
break;
}
// Apply any edits that intersect this layer to the layer's syntax tree.
let tree_edit = if edit_range.start.cmp(&layer.range.start, text).is_ge() {
tree_sitter::InputEdit {
start_byte: edit.new.start.0 - start_byte,
old_end_byte: edit.new.start.0 - start_byte
+ (edit.old.end.0 - edit.old.start.0),
new_end_byte: edit.new.end.0 - start_byte,
start_position: (edit.new.start.1 - start_point).to_ts_point(),
old_end_position: (edit.new.start.1 - start_point
+ (edit.old.end.1 - edit.old.start.1))
.to_ts_point(),
new_end_position: (edit.new.end.1 - start_point).to_ts_point(),
}
} else {
let node = tree.root_node();
tree_sitter::InputEdit {
start_byte: 0,
old_end_byte: node.end_byte(),
new_end_byte: 0,
start_position: Default::default(),
old_end_position: node.end_position(),
new_end_position: Default::default(),
}
};
tree.edit(&tree_edit);
}
debug_assert!(
tree.root_node().end_byte() <= text.len(),
"tree's size {}, is larger than text size {}",
tree.root_node().end_byte(),
text.len(),
);
}
layers.push(layer, text);
cursor.next(text);
}
layers.push_tree(cursor.suffix(&text), &text);
drop(cursor);
self.layers = layers;
}
pub fn reparse(
&mut self,
text: &BufferSnapshot,
registry: Option<Arc<LanguageRegistry>>,
root_language: Arc<Language>,
) {
let edit_ranges = text
.edits_since::<usize>(&self.parsed_version)
.map(|edit| edit.new)
.collect::<Vec<_>>();
self.reparse_with_ranges(text, root_language.clone(), edit_ranges, registry.as_ref());
if let Some(registry) = registry {
if registry.version() != self.language_registry_version {
let mut resolved_injection_ranges = Vec::new();
let mut cursor = self
.layers
.filter::<_, ()>(|summary| summary.contains_unknown_injections);
cursor.next(text);
while let Some(layer) = cursor.item() {
let SyntaxLayerContent::Pending { language_name } = &layer.content else { unreachable!() };
if {
let language_registry = &registry;
language_registry.language_for_name_or_extension(language_name)
}
.is_some()
{
resolved_injection_ranges.push(layer.range.to_offset(text));
}
cursor.next(text);
}
drop(cursor);
if !resolved_injection_ranges.is_empty() {
self.reparse_with_ranges(
text,
root_language,
resolved_injection_ranges,
Some(&registry),
);
}
self.language_registry_version = registry.version();
}
}
}
fn reparse_with_ranges(
&mut self,
text: &BufferSnapshot,
root_language: Arc<Language>,
invalidated_ranges: Vec<Range<usize>>,
registry: Option<&Arc<LanguageRegistry>>,
) {
let max_depth = self.layers.summary().max_depth;
let mut cursor = self.layers.cursor::<SyntaxLayerSummary>();
cursor.next(&text);
let mut layers = SumTree::new();
let mut changed_regions = ChangeRegionSet::default();
let mut queue = BinaryHeap::new();
let mut combined_injection_ranges = HashMap::default();
queue.push(ParseStep {
depth: 0,
language: ParseStepLanguage::Loaded {
language: root_language,
},
included_ranges: vec![tree_sitter::Range {
start_byte: 0,
end_byte: text.len(),
start_point: Point::zero().to_ts_point(),
end_point: text.max_point().to_ts_point(),
}],
range: Anchor::MIN..Anchor::MAX,
mode: ParseMode::Single,
});
loop {
let step = queue.pop();
let position = if let Some(step) = &step {
SyntaxLayerPosition {
depth: step.depth,
range: step.range.clone(),
language: step.language.id(),
}
} else {
SyntaxLayerPosition {
depth: max_depth + 1,
range: Anchor::MAX..Anchor::MAX,
language: None,
}
};
let mut done = cursor.item().is_none();
while !done && position.cmp(&cursor.end(text), &text).is_gt() {
done = true;
let bounded_position = SyntaxLayerPositionBeforeChange {
position: position.clone(),
change: changed_regions.start_position(),
};
if bounded_position.cmp(&cursor.start(), &text).is_gt() {
let slice = cursor.slice(&bounded_position, Bias::Left, text);
if !slice.is_empty() {
layers.push_tree(slice, &text);
if changed_regions.prune(cursor.end(text), text) {
done = false;
}
}
}
while position.cmp(&cursor.end(text), text).is_gt() {
let Some(layer) = cursor.item() else { break };
if changed_regions.intersects(&layer, text) {
changed_regions.insert(
ChangedRegion {
depth: layer.depth + 1,
range: layer.range.clone(),
},
text,
);
} else {
layers.push(layer.clone(), text);
}
cursor.next(text);
if changed_regions.prune(cursor.end(text), text) {
done = false;
}
}
}
let Some(step) = step else { break };
let (step_start_byte, step_start_point) =
step.range.start.summary::<(usize, Point)>(text);
let step_end_byte = step.range.end.to_offset(text);
let mut old_layer = cursor.item();
if let Some(layer) = old_layer {
if layer.range.to_offset(text) == (step_start_byte..step_end_byte)
&& layer.content.language_id() == step.language.id()
{
cursor.next(&text);
} else {
old_layer = None;
}
}
let content = match step.language {
ParseStepLanguage::Loaded { language } => {
let Some(grammar) = language.grammar() else { continue };
let tree;
let changed_ranges;
let mut included_ranges = step.included_ranges;
for range in &mut included_ranges {
range.start_byte -= step_start_byte;
range.end_byte -= step_start_byte;
range.start_point = (Point::from_ts_point(range.start_point)
- step_start_point)
.to_ts_point();
range.end_point = (Point::from_ts_point(range.end_point)
- step_start_point)
.to_ts_point();
}
if let Some(SyntaxLayerContent::Parsed { tree: old_tree, .. }) =
old_layer.map(|layer| &layer.content)
{
if let ParseMode::Combined {
mut parent_layer_changed_ranges,
..
} = step.mode
{
for range in &mut parent_layer_changed_ranges {
range.start -= step_start_byte;
range.end -= step_start_byte;
}
included_ranges = splice_included_ranges(
old_tree.included_ranges(),
&parent_layer_changed_ranges,
&included_ranges,
);
}
tree = parse_text(
grammar,
text.as_rope(),
step_start_byte,
included_ranges,
Some(old_tree.clone()),
);
changed_ranges = join_ranges(
invalidated_ranges.iter().cloned().filter(|range| {
range.start <= step_end_byte && range.end >= step_start_byte
}),
old_tree.changed_ranges(&tree).map(|r| {
step_start_byte + r.start_byte..step_start_byte + r.end_byte
}),
);
} else {
tree = parse_text(
grammar,
text.as_rope(),
step_start_byte,
included_ranges,
None,
);
changed_ranges = vec![step_start_byte..step_end_byte];
}
if let (Some((config, registry)), false) = (
grammar.injection_config.as_ref().zip(registry.as_ref()),
changed_ranges.is_empty(),
) {
for range in &changed_ranges {
changed_regions.insert(
ChangedRegion {
depth: step.depth + 1,
range: text.anchor_before(range.start)
..text.anchor_after(range.end),
},
text,
);
}
get_injections(
config,
text,
tree.root_node_with_offset(
step_start_byte,
step_start_point.to_ts_point(),
),
registry,
step.depth + 1,
&changed_ranges,
&mut combined_injection_ranges,
&mut queue,
);
}
SyntaxLayerContent::Parsed { tree, language }
}
ParseStepLanguage::Pending { name } => SyntaxLayerContent::Pending {
language_name: name,
},
};
layers.push(
SyntaxLayer {
depth: step.depth,
range: step.range,
content,
},
&text,
);
}
drop(cursor);
self.layers = layers;
self.interpolated_version = text.version.clone();
self.parsed_version = text.version.clone();
#[cfg(debug_assertions)]
self.check_invariants(text);
}
#[cfg(debug_assertions)]
fn check_invariants(&self, text: &BufferSnapshot) {
let mut max_depth = 0;
let mut prev_range: Option<Range<Anchor>> = None;
for layer in self.layers.iter() {
if layer.depth == max_depth {
if let Some(prev_range) = prev_range {
match layer.range.start.cmp(&prev_range.start, text) {
Ordering::Less => panic!("layers out of order"),
Ordering::Equal => {
assert!(layer.range.end.cmp(&prev_range.end, text).is_ge())
}
Ordering::Greater => {}
}
}
} else if layer.depth < max_depth {
panic!("layers out of order")
}
max_depth = layer.depth;
prev_range = Some(layer.range.clone());
}
}
pub fn single_tree_captures<'a>(
range: Range<usize>,
text: &'a Rope,
tree: &'a Tree,
language: &'a Arc<Language>,
query: fn(&Grammar) -> Option<&Query>,
) -> SyntaxMapCaptures<'a> {
SyntaxMapCaptures::new(
range.clone(),
text,
[SyntaxLayerInfo {
language,
depth: 0,
node: tree.root_node(),
}]
.into_iter(),
query,
)
}
pub fn captures<'a>(
&'a self,
range: Range<usize>,
buffer: &'a BufferSnapshot,
query: fn(&Grammar) -> Option<&Query>,
) -> SyntaxMapCaptures {
SyntaxMapCaptures::new(
range.clone(),
buffer.as_rope(),
self.layers_for_range(range, buffer).into_iter(),
query,
)
}
pub fn matches<'a>(
&'a self,
range: Range<usize>,
buffer: &'a BufferSnapshot,
query: fn(&Grammar) -> Option<&Query>,
) -> SyntaxMapMatches {
SyntaxMapMatches::new(
range.clone(),
buffer.as_rope(),
self.layers_for_range(range, buffer).into_iter(),
query,
)
}
#[cfg(test)]
pub fn layers<'a>(&'a self, buffer: &'a BufferSnapshot) -> Vec<SyntaxLayerInfo> {
self.layers_for_range(0..buffer.len(), buffer).collect()
}
pub fn layers_for_range<'a, T: ToOffset>(
&'a self,
range: Range<T>,
buffer: &'a BufferSnapshot,
) -> impl 'a + Iterator<Item = SyntaxLayerInfo> {
let start = buffer.anchor_before(range.start.to_offset(buffer));
let end = buffer.anchor_after(range.end.to_offset(buffer));
let mut cursor = self.layers.filter::<_, ()>(move |summary| {
if summary.max_depth > summary.min_depth {
true
} else {
let is_before_start = summary.range.end.cmp(&start, buffer).is_lt();
let is_after_end = summary.range.start.cmp(&end, buffer).is_gt();
!is_before_start && !is_after_end
}
});
cursor.next(buffer);
iter::from_fn(move || {
while let Some(layer) = cursor.item() {
if let SyntaxLayerContent::Parsed { tree, language } = &layer.content {
let info = SyntaxLayerInfo {
language,
depth: layer.depth,
node: tree.root_node_with_offset(
layer.range.start.to_offset(buffer),
layer.range.start.to_point(buffer).to_ts_point(),
),
};
cursor.next(buffer);
return Some(info);
} else {
cursor.next(buffer);
}
}
None
})
}
pub fn contains_unknown_injections(&self) -> bool {
self.layers.summary().contains_unknown_injections
}
pub fn language_registry_version(&self) -> usize {
self.language_registry_version
}
}
impl<'a> SyntaxMapCaptures<'a> {
fn new(
range: Range<usize>,
text: &'a Rope,
layers: impl Iterator<Item = SyntaxLayerInfo<'a>>,
query: fn(&Grammar) -> Option<&Query>,
) -> Self {
let mut result = Self {
layers: Vec::new(),
grammars: Vec::new(),
active_layer_count: 0,
};
for SyntaxLayerInfo {
language,
depth,
node,
} in layers
{
let grammar = match &language.grammar {
Some(grammer) => grammer,
None => continue,
};
let query = match query(&grammar) {
Some(query) => query,
None => continue,
};
let mut query_cursor = QueryCursorHandle::new();
// TODO - add a Tree-sitter API to remove the need for this.
let cursor = unsafe {
std::mem::transmute::<_, &'static mut QueryCursor>(query_cursor.deref_mut())
};
cursor.set_byte_range(range.clone());
let captures = cursor.captures(query, node, TextProvider(text));
let grammar_index = result
.grammars
.iter()
.position(|g| g.id == grammar.id())
.unwrap_or_else(|| {
result.grammars.push(grammar);
result.grammars.len() - 1
});
let mut layer = SyntaxMapCapturesLayer {
depth,
grammar_index,
next_capture: None,
captures,
_query_cursor: query_cursor,
};
layer.advance();
if layer.next_capture.is_some() {
let key = layer.sort_key();
let ix = match result.layers[..result.active_layer_count]
.binary_search_by_key(&key, |layer| layer.sort_key())
{
Ok(ix) | Err(ix) => ix,
};
result.layers.insert(ix, layer);
result.active_layer_count += 1;
} else {
result.layers.push(layer);
}
}
result
}
pub fn grammars(&self) -> &[&'a Grammar] {
&self.grammars
}
pub fn peek(&self) -> Option<SyntaxMapCapture<'a>> {
let layer = self.layers[..self.active_layer_count].first()?;
let capture = layer.next_capture?;
Some(SyntaxMapCapture {
depth: layer.depth,
grammar_index: layer.grammar_index,
index: capture.index,
node: capture.node,
})
}
pub fn advance(&mut self) -> bool {
let layer = if let Some(layer) = self.layers[..self.active_layer_count].first_mut() {
layer
} else {
return false;
};
layer.advance();
if layer.next_capture.is_some() {
let key = layer.sort_key();
let i = 1 + self.layers[1..self.active_layer_count]
.iter()
.position(|later_layer| key < later_layer.sort_key())
.unwrap_or(self.active_layer_count - 1);
self.layers[0..i].rotate_left(1);
} else {
self.layers[0..self.active_layer_count].rotate_left(1);
self.active_layer_count -= 1;
}
true
}
pub fn set_byte_range(&mut self, range: Range<usize>) {
for layer in &mut self.layers {
layer.captures.set_byte_range(range.clone());
if let Some(capture) = &layer.next_capture {
if capture.node.end_byte() > range.start {
continue;
}
}
layer.advance();
}
self.layers.sort_unstable_by_key(|layer| layer.sort_key());
self.active_layer_count = self
.layers
.iter()
.position(|layer| layer.next_capture.is_none())
.unwrap_or(self.layers.len());
}
}
impl<'a> SyntaxMapMatches<'a> {
fn new(
range: Range<usize>,
text: &'a Rope,
layers: impl Iterator<Item = SyntaxLayerInfo<'a>>,
query: fn(&Grammar) -> Option<&Query>,
) -> Self {
let mut result = Self::default();
for SyntaxLayerInfo {
language,
depth,
node,
} in layers
{
let grammar = match &language.grammar {
Some(grammer) => grammer,
None => continue,
};
let query = match query(&grammar) {
Some(query) => query,
None => continue,
};
let mut query_cursor = QueryCursorHandle::new();
// TODO - add a Tree-sitter API to remove the need for this.
let cursor = unsafe {
std::mem::transmute::<_, &'static mut QueryCursor>(query_cursor.deref_mut())
};
cursor.set_byte_range(range.clone());
let matches = cursor.matches(query, node, TextProvider(text));
let grammar_index = result
.grammars
.iter()
.position(|g| g.id == grammar.id())
.unwrap_or_else(|| {
result.grammars.push(grammar);
result.grammars.len() - 1
});
let mut layer = SyntaxMapMatchesLayer {
depth,
grammar_index,
matches,
next_pattern_index: 0,
next_captures: Vec::new(),
has_next: false,
_query_cursor: query_cursor,
};
layer.advance();
if layer.has_next {
let key = layer.sort_key();
let ix = match result.layers[..result.active_layer_count]
.binary_search_by_key(&key, |layer| layer.sort_key())
{
Ok(ix) | Err(ix) => ix,
};
result.layers.insert(ix, layer);
result.active_layer_count += 1;
} else {
result.layers.push(layer);
}
}
result
}
pub fn grammars(&self) -> &[&'a Grammar] {
&self.grammars
}
pub fn peek(&self) -> Option<SyntaxMapMatch> {
let layer = self.layers.first()?;
if !layer.has_next {
return None;
}
Some(SyntaxMapMatch {
depth: layer.depth,
grammar_index: layer.grammar_index,
pattern_index: layer.next_pattern_index,
captures: &layer.next_captures,
})
}
pub fn advance(&mut self) -> bool {
let layer = if let Some(layer) = self.layers.first_mut() {
layer
} else {
return false;
};
layer.advance();
if layer.has_next {
let key = layer.sort_key();
let i = 1 + self.layers[1..self.active_layer_count]
.iter()
.position(|later_layer| key < later_layer.sort_key())
.unwrap_or(self.active_layer_count - 1);
self.layers[0..i].rotate_left(1);
} else {
self.layers[0..self.active_layer_count].rotate_left(1);
self.active_layer_count -= 1;
}
true
}
}
impl<'a> SyntaxMapCapturesLayer<'a> {
fn advance(&mut self) {
self.next_capture = self.captures.next().map(|(mat, ix)| mat.captures[ix]);
}
fn sort_key(&self) -> (usize, Reverse<usize>, usize) {
if let Some(capture) = &self.next_capture {
let range = capture.node.byte_range();
(range.start, Reverse(range.end), self.depth)
} else {
(usize::MAX, Reverse(0), usize::MAX)
}
}
}
impl<'a> SyntaxMapMatchesLayer<'a> {
fn advance(&mut self) {
if let Some(mat) = self.matches.next() {
self.next_captures.clear();
self.next_captures.extend_from_slice(&mat.captures);
self.next_pattern_index = mat.pattern_index;
self.has_next = true;
} else {
self.has_next = false;
}
}
fn sort_key(&self) -> (usize, Reverse<usize>, usize) {
if self.has_next {
let captures = &self.next_captures;
if let Some((first, last)) = captures.first().zip(captures.last()) {
return (
first.node.start_byte(),
Reverse(last.node.end_byte()),
self.depth,
);
}
}
(usize::MAX, Reverse(0), usize::MAX)
}
}
impl<'a> Iterator for SyntaxMapCaptures<'a> {
type Item = SyntaxMapCapture<'a>;
fn next(&mut self) -> Option<Self::Item> {
let result = self.peek();
self.advance();
result
}
}
fn join_ranges(
a: impl Iterator<Item = Range<usize>>,
b: impl Iterator<Item = Range<usize>>,
) -> Vec<Range<usize>> {
let mut result = Vec::<Range<usize>>::new();
let mut a = a.peekable();
let mut b = b.peekable();
loop {
let range = match (a.peek(), b.peek()) {
(Some(range_a), Some(range_b)) => {
if range_a.start < range_b.start {
a.next().unwrap()
} else {
b.next().unwrap()
}
}
(None, Some(_)) => b.next().unwrap(),
(Some(_), None) => a.next().unwrap(),
(None, None) => break,
};
if let Some(last) = result.last_mut() {
if range.start <= last.end {
last.end = last.end.max(range.end);
continue;
}
}
result.push(range);
}
result
}
fn parse_text(
grammar: &Grammar,
text: &Rope,
start_byte: usize,
ranges: Vec<tree_sitter::Range>,
old_tree: Option<Tree>,
) -> Tree {
PARSER.with(|parser| {
let mut parser = parser.borrow_mut();
let mut chunks = text.chunks_in_range(start_byte..text.len());
parser
.set_included_ranges(&ranges)
.expect("overlapping ranges");
parser
.set_language(grammar.ts_language)
.expect("incompatible grammar");
parser
.parse_with(
&mut move |offset, _| {
chunks.seek(start_byte + offset);
chunks.next().unwrap_or("").as_bytes()
},
old_tree.as_ref(),
)
.expect("invalid language")
})
}
fn get_injections(
config: &InjectionConfig,
text: &BufferSnapshot,
node: Node,
language_registry: &Arc<LanguageRegistry>,
depth: usize,
changed_ranges: &[Range<usize>],
combined_injection_ranges: &mut HashMap<Arc<Language>, Vec<tree_sitter::Range>>,
queue: &mut BinaryHeap<ParseStep>,
) {
let mut query_cursor = QueryCursorHandle::new();
let mut prev_match = None;
combined_injection_ranges.clear();
for pattern in &config.patterns {
if let (Some(language_name), true) = (pattern.language.as_ref(), pattern.combined) {
if let Some(language) = language_registry.language_for_name_or_extension(language_name)
{
combined_injection_ranges.insert(language, Vec::new());
}
}
}
for query_range in changed_ranges {
query_cursor.set_byte_range(query_range.start.saturating_sub(1)..query_range.end + 1);
for mat in query_cursor.matches(&config.query, node, TextProvider(text.as_rope())) {
let content_ranges = mat
.nodes_for_capture_index(config.content_capture_ix)
.map(|node| node.range())
.collect::<Vec<_>>();
if content_ranges.is_empty() {
continue;
}
// Avoid duplicate matches if two changed ranges intersect the same injection.
let content_range =
content_ranges.first().unwrap().start_byte..content_ranges.last().unwrap().end_byte;
if let Some((last_pattern_ix, last_range)) = &prev_match {
if mat.pattern_index == *last_pattern_ix && content_range == *last_range {
continue;
}
}
prev_match = Some((mat.pattern_index, content_range.clone()));
let combined = config.patterns[mat.pattern_index].combined;
let mut language_name = None;
let mut step_range = content_range.clone();
if let Some(name) = config.patterns[mat.pattern_index].language.as_ref() {
language_name = Some(Cow::Borrowed(name.as_ref()))
} else if let Some(language_node) = config
.language_capture_ix
.and_then(|ix| mat.nodes_for_capture_index(ix).next())
{
step_range.start = cmp::min(content_range.start, language_node.start_byte());
step_range.end = cmp::max(content_range.end, language_node.end_byte());
language_name = Some(Cow::Owned(
text.text_for_range(language_node.byte_range()).collect(),
))
};
if let Some(language_name) = language_name {
let language = {
let language_name: &str = &language_name;
language_registry.language_for_name_or_extension(language_name)
};
let range = text.anchor_before(step_range.start)..text.anchor_after(step_range.end);
if let Some(language) = language {
if combined {
combined_injection_ranges
.get_mut(&language.clone())
.unwrap()
.extend(content_ranges);
} else {
queue.push(ParseStep {
depth,
language: ParseStepLanguage::Loaded { language },
included_ranges: content_ranges,
range,
mode: ParseMode::Single,
});
}
} else {
queue.push(ParseStep {
depth,
language: ParseStepLanguage::Pending {
name: language_name.into(),
},
included_ranges: content_ranges,
range,
mode: ParseMode::Single,
});
}
}
}
}
for (language, mut included_ranges) in combined_injection_ranges.drain() {
included_ranges.sort_unstable();
let range = text.anchor_before(node.start_byte())..text.anchor_after(node.end_byte());
queue.push(ParseStep {
depth,
language: ParseStepLanguage::Loaded { language },
range,
included_ranges,
mode: ParseMode::Combined {
parent_layer_range: node.start_byte()..node.end_byte(),
parent_layer_changed_ranges: changed_ranges.to_vec(),
},
})
}
}
fn splice_included_ranges(
mut ranges: Vec<tree_sitter::Range>,
changed_ranges: &[Range<usize>],
new_ranges: &[tree_sitter::Range],
) -> Vec<tree_sitter::Range> {
let mut changed_ranges = changed_ranges.into_iter().peekable();
let mut new_ranges = new_ranges.into_iter().peekable();
let mut ranges_ix = 0;
loop {
let new_range = new_ranges.peek();
let mut changed_range = changed_ranges.peek();
// Remove ranges that have changed before inserting any new ranges
// into those ranges.
if let Some((changed, new)) = changed_range.zip(new_range) {
if new.end_byte < changed.start {
changed_range = None;
}
}
if let Some(changed) = changed_range {
let mut start_ix = ranges_ix
+ match ranges[ranges_ix..].binary_search_by_key(&changed.start, |r| r.end_byte) {
Ok(ix) | Err(ix) => ix,
};
let mut end_ix = ranges_ix
+ match ranges[ranges_ix..].binary_search_by_key(&changed.end, |r| r.start_byte) {
Ok(ix) => ix + 1,
Err(ix) => ix,
};
// If there are empty ranges, then there may be multiple ranges with the same
// start or end. Expand the splice to include any adjacent ranges that touch
// the changed range.
while start_ix > 0 {
if ranges[start_ix - 1].end_byte == changed.start {
start_ix -= 1;
} else {
break;
}
}
while let Some(range) = ranges.get(end_ix) {
if range.start_byte == changed.end {
end_ix += 1;
} else {
break;
}
}
if end_ix > start_ix {
ranges.splice(start_ix..end_ix, []);
}
changed_ranges.next();
ranges_ix = start_ix;
} else if let Some(new_range) = new_range {
let ix = ranges_ix
+ match ranges[ranges_ix..]
.binary_search_by_key(&new_range.start_byte, |r| r.start_byte)
{
Ok(ix) | Err(ix) => ix,
};
ranges.insert(ix, **new_range);
new_ranges.next();
ranges_ix = ix + 1;
} else {
break;
}
}
ranges
}
impl<'a> SyntaxLayerInfo<'a> {
pub(crate) fn override_id(&self, offset: usize, text: &text::BufferSnapshot) -> Option<u32> {
let text = TextProvider(text.as_rope());
let config = self.language.grammar.as_ref()?.override_config.as_ref()?;
let mut query_cursor = QueryCursorHandle::new();
query_cursor.set_byte_range(offset..offset);
let mut smallest_match: Option<(u32, Range<usize>)> = None;
for mat in query_cursor.matches(&config.query, self.node, text) {
for capture in mat.captures {
if !config.values.contains_key(&capture.index) {
continue;
}
let range = capture.node.byte_range();
if offset <= range.start || offset >= range.end {
continue;
}
if let Some((_, smallest_range)) = &smallest_match {
if range.len() < smallest_range.len() {
smallest_match = Some((capture.index, range))
}
continue;
}
smallest_match = Some((capture.index, range));
}
}
smallest_match.map(|(index, _)| index)
}
}
impl std::ops::Deref for SyntaxMap {
type Target = SyntaxSnapshot;
fn deref(&self) -> &Self::Target {
&self.snapshot
}
}
impl PartialEq for ParseStep {
fn eq(&self, _: &Self) -> bool {
false
}
}
impl Eq for ParseStep {}
impl PartialOrd for ParseStep {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(&other))
}
}
impl Ord for ParseStep {
fn cmp(&self, other: &Self) -> Ordering {
let range_a = self.range();
let range_b = other.range();
Ord::cmp(&other.depth, &self.depth)
.then_with(|| Ord::cmp(&range_b.start, &range_a.start))
.then_with(|| Ord::cmp(&range_a.end, &range_b.end))
.then_with(|| self.language.id().cmp(&other.language.id()))
}
}
impl ParseStep {
fn range(&self) -> Range<usize> {
if let ParseMode::Combined {
parent_layer_range, ..
} = &self.mode
{
parent_layer_range.clone()
} else {
let start = self.included_ranges.first().map_or(0, |r| r.start_byte);
let end = self.included_ranges.last().map_or(0, |r| r.end_byte);
start..end
}
}
}
impl ChangedRegion {
fn cmp(&self, other: &Self, buffer: &BufferSnapshot) -> Ordering {
let range_a = &self.range;
let range_b = &other.range;
Ord::cmp(&self.depth, &other.depth)
.then_with(|| range_a.start.cmp(&range_b.start, buffer))
.then_with(|| range_b.end.cmp(&range_a.end, buffer))
}
}
impl ChangeRegionSet {
fn start_position(&self) -> ChangeStartPosition {
self.0.first().map_or(
ChangeStartPosition {
depth: usize::MAX,
position: Anchor::MAX,
},
|region| ChangeStartPosition {
depth: region.depth,
position: region.range.start,
},
)
}
fn intersects(&self, layer: &SyntaxLayer, text: &BufferSnapshot) -> bool {
for region in &self.0 {
if region.depth < layer.depth {
continue;
}
if region.depth > layer.depth {
break;
}
if region.range.end.cmp(&layer.range.start, text).is_le() {
continue;
}
if region.range.start.cmp(&layer.range.end, text).is_ge() {
break;
}
return true;
}
false
}
fn insert(&mut self, region: ChangedRegion, text: &BufferSnapshot) {
if let Err(ix) = self.0.binary_search_by(|probe| probe.cmp(&region, text)) {
self.0.insert(ix, region);
}
}
fn prune(&mut self, summary: SyntaxLayerSummary, text: &BufferSnapshot) -> bool {
let prev_len = self.0.len();
self.0.retain(|region| {
region.depth > summary.max_depth
|| (region.depth == summary.max_depth
&& region
.range
.end
.cmp(&summary.last_layer_range.start, text)
.is_gt())
});
self.0.len() < prev_len
}
}
impl Default for SyntaxLayerSummary {
fn default() -> Self {
Self {
max_depth: 0,
min_depth: 0,
range: Anchor::MAX..Anchor::MIN,
last_layer_range: Anchor::MIN..Anchor::MAX,
last_layer_language: None,
contains_unknown_injections: false,
}
}
}
impl sum_tree::Summary for SyntaxLayerSummary {
type Context = BufferSnapshot;
fn add_summary(&mut self, other: &Self, buffer: &Self::Context) {
if other.max_depth > self.max_depth {
self.max_depth = other.max_depth;
self.range = other.range.clone();
} else {
if self.range == (Anchor::MAX..Anchor::MAX) {
self.range.start = other.range.start;
}
if other.range.end.cmp(&self.range.end, buffer).is_gt() {
self.range.end = other.range.end;
}
}
self.last_layer_range = other.last_layer_range.clone();
self.last_layer_language = other.last_layer_language;
self.contains_unknown_injections |= other.contains_unknown_injections;
}
}
impl<'a> SeekTarget<'a, SyntaxLayerSummary, SyntaxLayerSummary> for SyntaxLayerPosition {
fn cmp(&self, cursor_location: &SyntaxLayerSummary, buffer: &BufferSnapshot) -> Ordering {
Ord::cmp(&self.depth, &cursor_location.max_depth)
.then_with(|| {
self.range
.start
.cmp(&cursor_location.last_layer_range.start, buffer)
})
.then_with(|| {
cursor_location
.last_layer_range
.end
.cmp(&self.range.end, buffer)
})
.then_with(|| self.language.cmp(&cursor_location.last_layer_language))
}
}
impl<'a> SeekTarget<'a, SyntaxLayerSummary, SyntaxLayerSummary> for ChangeStartPosition {
fn cmp(&self, cursor_location: &SyntaxLayerSummary, text: &BufferSnapshot) -> Ordering {
Ord::cmp(&self.depth, &cursor_location.max_depth)
.then_with(|| self.position.cmp(&cursor_location.range.end, text))
}
}
impl<'a> SeekTarget<'a, SyntaxLayerSummary, SyntaxLayerSummary>
for SyntaxLayerPositionBeforeChange
{
fn cmp(&self, cursor_location: &SyntaxLayerSummary, buffer: &BufferSnapshot) -> Ordering {
if self.change.cmp(cursor_location, buffer).is_le() {
return Ordering::Less;
} else {
self.position.cmp(cursor_location, buffer)
}
}
}
impl sum_tree::Item for SyntaxLayer {
type Summary = SyntaxLayerSummary;
fn summary(&self) -> Self::Summary {
SyntaxLayerSummary {
min_depth: self.depth,
max_depth: self.depth,
range: self.range.clone(),
last_layer_range: self.range.clone(),
last_layer_language: self.content.language_id(),
contains_unknown_injections: matches!(self.content, SyntaxLayerContent::Pending { .. }),
}
}
}
impl std::fmt::Debug for SyntaxLayer {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SyntaxLayer")
.field("depth", &self.depth)
.field("range", &self.range)
.field("tree", &self.content.tree())
.finish()
}
}
impl<'a> tree_sitter::TextProvider<'a> for TextProvider<'a> {
type I = ByteChunks<'a>;
fn text(&mut self, node: tree_sitter::Node) -> Self::I {
ByteChunks(self.0.chunks_in_range(node.byte_range()))
}
}
impl<'a> Iterator for ByteChunks<'a> {
type Item = &'a [u8];
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(str::as_bytes)
}
}
impl QueryCursorHandle {
pub(crate) fn new() -> Self {
let mut cursor = QUERY_CURSORS.lock().pop().unwrap_or_else(QueryCursor::new);
cursor.set_match_limit(64);
QueryCursorHandle(Some(cursor))
}
}
impl Deref for QueryCursorHandle {
type Target = QueryCursor;
fn deref(&self) -> &Self::Target {
self.0.as_ref().unwrap()
}
}
impl DerefMut for QueryCursorHandle {
fn deref_mut(&mut self) -> &mut Self::Target {
self.0.as_mut().unwrap()
}
}
impl Drop for QueryCursorHandle {
fn drop(&mut self) {
let mut cursor = self.0.take().unwrap();
cursor.set_byte_range(0..usize::MAX);
cursor.set_point_range(Point::zero().to_ts_point()..Point::MAX.to_ts_point());
QUERY_CURSORS.lock().push(cursor)
}
}
pub(crate) trait ToTreeSitterPoint {
fn to_ts_point(self) -> tree_sitter::Point;
fn from_ts_point(point: tree_sitter::Point) -> Self;
}
impl ToTreeSitterPoint for Point {
fn to_ts_point(self) -> tree_sitter::Point {
tree_sitter::Point::new(self.row as usize, self.column as usize)
}
fn from_ts_point(point: tree_sitter::Point) -> Self {
Point::new(point.row as u32, point.column as u32)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::LanguageConfig;
use rand::rngs::StdRng;
use std::env;
use text::Buffer;
use unindent::Unindent as _;
use util::test::marked_text_ranges;
#[test]
fn test_splice_included_ranges() {
let ranges = vec![ts_range(20..30), ts_range(50..60), ts_range(80..90)];
let new_ranges = splice_included_ranges(
ranges.clone(),
&[54..56, 58..68],
&[ts_range(50..54), ts_range(59..67)],
);
assert_eq!(
new_ranges,
&[
ts_range(20..30),
ts_range(50..54),
ts_range(59..67),
ts_range(80..90),
]
);
let new_ranges = splice_included_ranges(ranges.clone(), &[70..71, 91..100], &[]);
assert_eq!(
new_ranges,
&[ts_range(20..30), ts_range(50..60), ts_range(80..90)]
);
let new_ranges =
splice_included_ranges(ranges.clone(), &[], &[ts_range(0..2), ts_range(70..75)]);
assert_eq!(
new_ranges,
&[
ts_range(0..2),
ts_range(20..30),
ts_range(50..60),
ts_range(70..75),
ts_range(80..90)
]
);
let new_ranges = splice_included_ranges(ranges.clone(), &[30..50], &[ts_range(25..55)]);
assert_eq!(new_ranges, &[ts_range(25..55), ts_range(80..90)]);
fn ts_range(range: Range<usize>) -> tree_sitter::Range {
tree_sitter::Range {
start_byte: range.start,
start_point: tree_sitter::Point {
row: 0,
column: range.start,
},
end_byte: range.end,
end_point: tree_sitter::Point {
row: 0,
column: range.end,
},
}
}
}
#[gpui::test]
fn test_syntax_map_layers_for_range() {
let registry = Arc::new(LanguageRegistry::test());
let language = Arc::new(rust_lang());
registry.add(language.clone());
let mut buffer = Buffer::new(
0,
0,
r#"
fn a() {
assert_eq!(
b(vec![C {}]),
vec![d.e],
);
println!("{}", f(|_| true));
}
"#
.unindent(),
);
let mut syntax_map = SyntaxMap::new();
syntax_map.set_language_registry(registry.clone());
syntax_map.reparse(language.clone(), &buffer);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(2, 0)..Point::new(2, 0),
&[
"...(function_item ... (block (expression_statement (macro_invocation...",
"...(tuple_expression (call_expression ... arguments: (arguments (macro_invocation...",
],
);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(2, 14)..Point::new(2, 16),
&[
"...(function_item ...",
"...(tuple_expression (call_expression ... arguments: (arguments (macro_invocation...",
"...(array_expression (struct_expression ...",
],
);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(3, 14)..Point::new(3, 16),
&[
"...(function_item ...",
"...(tuple_expression (call_expression ... arguments: (arguments (macro_invocation...",
"...(array_expression (field_expression ...",
],
);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(5, 12)..Point::new(5, 16),
&[
"...(function_item ...",
"...(call_expression ... (arguments (closure_expression ...",
],
);
// Replace a vec! macro invocation with a plain slice, removing a syntactic layer.
let macro_name_range = range_for_text(&buffer, "vec!");
buffer.edit([(macro_name_range, "&")]);
syntax_map.interpolate(&buffer);
syntax_map.reparse(language.clone(), &buffer);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(2, 14)..Point::new(2, 16),
&[
"...(function_item ...",
"...(tuple_expression (call_expression ... arguments: (arguments (reference_expression value: (array_expression...",
],
);
// Put the vec! macro back, adding back the syntactic layer.
buffer.undo();
syntax_map.interpolate(&buffer);
syntax_map.reparse(language.clone(), &buffer);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(2, 14)..Point::new(2, 16),
&[
"...(function_item ...",
"...(tuple_expression (call_expression ... arguments: (arguments (macro_invocation...",
"...(array_expression (struct_expression ...",
],
);
}
#[gpui::test]
fn test_dynamic_language_injection() {
let registry = Arc::new(LanguageRegistry::test());
let markdown = Arc::new(markdown_lang());
registry.add(markdown.clone());
registry.add(Arc::new(rust_lang()));
registry.add(Arc::new(ruby_lang()));
let mut buffer = Buffer::new(
0,
0,
r#"
This is a code block:
```rs
fn foo() {}
```
"#
.unindent(),
);
let mut syntax_map = SyntaxMap::new();
syntax_map.set_language_registry(registry.clone());
syntax_map.reparse(markdown.clone(), &buffer);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(3, 0)..Point::new(3, 0),
&[
"...(fenced_code_block (fenced_code_block_delimiter) (info_string (language)) (code_fence_content) (fenced_code_block_delimiter...",
"...(function_item name: (identifier) parameters: (parameters) body: (block)...",
],
);
// Replace Rust with Ruby in code block.
let macro_name_range = range_for_text(&buffer, "rs");
buffer.edit([(macro_name_range, "ruby")]);
syntax_map.interpolate(&buffer);
syntax_map.reparse(markdown.clone(), &buffer);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(3, 0)..Point::new(3, 0),
&[
"...(fenced_code_block (fenced_code_block_delimiter) (info_string (language)) (code_fence_content) (fenced_code_block_delimiter...",
"...(call method: (identifier) arguments: (argument_list (call method: (identifier) arguments: (argument_list) block: (block)...",
],
);
// Replace Ruby with a language that hasn't been loaded yet.
let macro_name_range = range_for_text(&buffer, "ruby");
buffer.edit([(macro_name_range, "html")]);
syntax_map.interpolate(&buffer);
syntax_map.reparse(markdown.clone(), &buffer);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(3, 0)..Point::new(3, 0),
&[
"...(fenced_code_block (fenced_code_block_delimiter) (info_string (language)) (code_fence_content) (fenced_code_block_delimiter..."
],
);
assert!(syntax_map.contains_unknown_injections());
registry.add(Arc::new(html_lang()));
syntax_map.reparse(markdown.clone(), &buffer);
assert_layers_for_range(
&syntax_map,
&buffer,
Point::new(3, 0)..Point::new(3, 0),
&[
"...(fenced_code_block (fenced_code_block_delimiter) (info_string (language)) (code_fence_content) (fenced_code_block_delimiter...",
"(fragment (text))",
],
);
assert!(!syntax_map.contains_unknown_injections());
}
#[gpui::test]
fn test_typing_multiple_new_injections() {
let (buffer, syntax_map) = test_edit_sequence(
"Rust",
&[
"fn a() { dbg }",
"fn a() { dbg«!» }",
"fn a() { dbg!«()» }",
"fn a() { dbg!(«b») }",
"fn a() { dbg!(b«.») }",
"fn a() { dbg!(b.«c») }",
"fn a() { dbg!(b.c«()») }",
"fn a() { dbg!(b.c(«vec»)) }",
"fn a() { dbg!(b.c(vec«!»)) }",
"fn a() { dbg!(b.c(vec!«[]»)) }",
"fn a() { dbg!(b.c(vec![«d»])) }",
"fn a() { dbg!(b.c(vec![d«.»])) }",
"fn a() { dbg!(b.c(vec![d.«e»])) }",
],
);
assert_capture_ranges(
&syntax_map,
&buffer,
&["field"],
"fn a() { dbg!(b.«c»(vec![d.«e»])) }",
);
}
#[gpui::test]
fn test_pasting_new_injection_line_between_others() {
let (buffer, syntax_map) = test_edit_sequence(
"Rust",
&[
"
fn a() {
b!(B {});
c!(C {});
d!(D {});
e!(E {});
f!(F {});
g!(G {});
}
",
"
fn a() {
b!(B {});
c!(C {});
d!(D {});
« h!(H {});
» e!(E {});
f!(F {});
g!(G {});
}
",
],
);
assert_capture_ranges(
&syntax_map,
&buffer,
&["struct"],
"
fn a() {
b!(«B {}»);
c!(«C {}»);
d!(«D {}»);
h!(«H {}»);
e!(«E {}»);
f!(«F {}»);
g!(«G {}»);
}
",
);
}
#[gpui::test]
fn test_joining_injections_with_child_injections() {
let (buffer, syntax_map) = test_edit_sequence(
"Rust",
&[
"
fn a() {
b!(
c![one.two.three],
d![four.five.six],
);
e!(
f![seven.eight],
);
}
",
"
fn a() {
b!(
c![one.two.three],
d![four.five.six],
ˇ f![seven.eight],
);
}
",
],
);
assert_capture_ranges(
&syntax_map,
&buffer,
&["field"],
"
fn a() {
b!(
c![one.«two».«three»],
d![four.«five».«six»],
f![seven.«eight»],
);
}
",
);
}
#[gpui::test]
fn test_editing_edges_of_injection() {
test_edit_sequence(
"Rust",
&[
"
fn a() {
b!(c!())
}
",
"
fn a() {
«d»!(c!())
}
",
"
fn a() {
«e»d!(c!())
}
",
"
fn a() {
ed!«[»c!()«]»
}
",
],
);
}
#[gpui::test]
fn test_edits_preceding_and_intersecting_injection() {
test_edit_sequence(
"Rust",
&[
//
"const aaaaaaaaaaaa: B = c!(d(e.f));",
"const aˇa: B = c!(d(eˇ));",
],
);
}
#[gpui::test]
fn test_non_local_changes_create_injections() {
test_edit_sequence(
"Rust",
&[
"
// a! {
static B: C = d;
// }
",
"
ˇa! {
static B: C = d;
ˇ}
",
],
);
}
#[gpui::test]
fn test_creating_many_injections_in_one_edit() {
test_edit_sequence(
"Rust",
&[
"
fn a() {
one(Two::three(3));
four(Five::six(6));
seven(Eight::nine(9));
}
",
"
fn a() {
one«!»(Two::three(3));
four«!»(Five::six(6));
seven«!»(Eight::nine(9));
}
",
"
fn a() {
one!(Two::three«!»(3));
four!(Five::six«!»(6));
seven!(Eight::nine«!»(9));
}
",
],
);
}
#[gpui::test]
fn test_editing_across_injection_boundary() {
test_edit_sequence(
"Rust",
&[
"
fn one() {
two();
three!(
three.four,
five.six,
);
}
",
"
fn one() {
two();
th«irty_five![»
three.four,
five.six,
« seven.eight,
];»
}
",
],
);
}
#[gpui::test]
fn test_removing_injection_by_replacing_across_boundary() {
test_edit_sequence(
"Rust",
&[
"
fn one() {
two!(
three.four,
);
}
",
"
fn one() {
t«en
.eleven(
twelve,
»
three.four,
);
}
",
],
);
}
#[gpui::test]
fn test_combined_injections() {
let (buffer, syntax_map) = test_edit_sequence(
"ERB",
&[
"
<body>
<% if @one %>
<div class=one>
<% else %>
<div class=two>
<% end %>
</div>
</body>
",
"
<body>
<% if @one %>
<div class=one>
ˇ else ˇ
<div class=two>
<% end %>
</div>
</body>
",
"
<body>
<% if @one «;» end %>
</div>
</body>
",
],
);
assert_capture_ranges(
&syntax_map,
&buffer,
&["tag", "ivar"],
"
<«body»>
<% if «@one» ; end %>
</«div»>
</«body»>
",
);
}
#[gpui::test]
fn test_combined_injections_empty_ranges() {
test_edit_sequence(
"ERB",
&[
"
<% if @one %>
<% else %>
<% end %>
",
"
<% if @one %>
ˇ<% end %>
",
],
);
}
#[gpui::test]
fn test_combined_injections_edit_edges_of_ranges() {
let (buffer, syntax_map) = test_edit_sequence(
"ERB",
&[
"
<%= one @two %>
<%= three @four %>
",
"
<%= one @two %ˇ
<%= three @four %>
",
"
<%= one @two %«>»
<%= three @four %>
",
],
);
assert_capture_ranges(
&syntax_map,
&buffer,
&["tag", "ivar"],
"
<%= one «@two» %>
<%= three «@four» %>
",
);
}
#[gpui::test]
fn test_combined_injections_splitting_some_injections() {
let (_buffer, _syntax_map) = test_edit_sequence(
"ERB",
&[
r#"
<%A if b(:c) %>
d
<% end %>
eee
<% f %>
"#,
r#"
<%« AAAAAAA %>
hhhhhhh
<%=» if b(:c) %>
d
<% end %>
eee
<% f %>
"#,
],
);
}
#[gpui::test]
fn test_combined_injections_inside_injections() {
let (_buffer, _syntax_map) = test_edit_sequence(
"Markdown",
&[
r#"
here is some ERB code:
```erb
<ul>
<% people.each do |person| %>
<li><%= person.name %></li>
<% end %>
</ul>
```
"#,
r#"
here is some ERB code:
```erb
<ul>
<% people«2».each do |person| %>
<li><%= person.name %></li>
<% end %>
</ul>
```
"#,
],
);
}
#[gpui::test(iterations = 50)]
fn test_random_syntax_map_edits(mut rng: StdRng) {
let operations = env::var("OPERATIONS")
.map(|i| i.parse().expect("invalid `OPERATIONS` variable"))
.unwrap_or(10);
let text = r#"
fn test_something() {
let vec = vec![5, 1, 3, 8];
assert_eq!(
vec
.into_iter()
.map(|i| i * 2)
.collect::<Vec<usize>>(),
vec![
5 * 2, 1 * 2, 3 * 2, 8 * 2
],
);
}
"#
.unindent()
.repeat(2);
let registry = Arc::new(LanguageRegistry::test());
let language = Arc::new(rust_lang());
registry.add(language.clone());
let mut buffer = Buffer::new(0, 0, text);
let mut syntax_map = SyntaxMap::new();
syntax_map.set_language_registry(registry.clone());
syntax_map.reparse(language.clone(), &buffer);
let mut reference_syntax_map = SyntaxMap::new();
reference_syntax_map.set_language_registry(registry.clone());
log::info!("initial text:\n{}", buffer.text());
for _ in 0..operations {
let prev_buffer = buffer.snapshot();
let prev_syntax_map = syntax_map.snapshot();
buffer.randomly_edit(&mut rng, 3);
log::info!("text:\n{}", buffer.text());
syntax_map.interpolate(&buffer);
check_interpolation(&prev_syntax_map, &syntax_map, &prev_buffer, &buffer);
syntax_map.reparse(language.clone(), &buffer);
reference_syntax_map.clear();
reference_syntax_map.reparse(language.clone(), &buffer);
}
for i in 0..operations {
let i = operations - i - 1;
buffer.undo();
log::info!("undoing operation {}", i);
log::info!("text:\n{}", buffer.text());
syntax_map.interpolate(&buffer);
syntax_map.reparse(language.clone(), &buffer);
reference_syntax_map.clear();
reference_syntax_map.reparse(language.clone(), &buffer);
assert_eq!(
syntax_map.layers(&buffer).len(),
reference_syntax_map.layers(&buffer).len(),
"wrong number of layers after undoing edit {i}"
);
}
let layers = syntax_map.layers(&buffer);
let reference_layers = reference_syntax_map.layers(&buffer);
for (edited_layer, reference_layer) in layers.into_iter().zip(reference_layers.into_iter())
{
assert_eq!(edited_layer.node.to_sexp(), reference_layer.node.to_sexp());
assert_eq!(edited_layer.node.range(), reference_layer.node.range());
}
}
#[gpui::test(iterations = 50)]
fn test_random_syntax_map_edits_with_combined_injections(mut rng: StdRng) {
let operations = env::var("OPERATIONS")
.map(|i| i.parse().expect("invalid `OPERATIONS` variable"))
.unwrap_or(10);
let text = r#"
<div id="main">
<% if one?(:two) %>
<p class="three" four>
<%= yield :five %>
</p>
<% elsif Six.seven(8) %>
<p id="three" four>
<%= yield :five %>
</p>
<% else %>
<span>Ok</span>
<% end %>
</div>
"#
.unindent()
.repeat(8);
let registry = Arc::new(LanguageRegistry::test());
let language = Arc::new(erb_lang());
registry.add(language.clone());
registry.add(Arc::new(ruby_lang()));
registry.add(Arc::new(html_lang()));
let mut buffer = Buffer::new(0, 0, text);
let mut syntax_map = SyntaxMap::new();
syntax_map.set_language_registry(registry.clone());
syntax_map.reparse(language.clone(), &buffer);
let mut reference_syntax_map = SyntaxMap::new();
reference_syntax_map.set_language_registry(registry.clone());
log::info!("initial text:\n{}", buffer.text());
for _ in 0..operations {
let prev_buffer = buffer.snapshot();
let prev_syntax_map = syntax_map.snapshot();
buffer.randomly_edit(&mut rng, 3);
log::info!("text:\n{}", buffer.text());
syntax_map.interpolate(&buffer);
check_interpolation(&prev_syntax_map, &syntax_map, &prev_buffer, &buffer);
syntax_map.reparse(language.clone(), &buffer);
reference_syntax_map.clear();
reference_syntax_map.reparse(language.clone(), &buffer);
}
for i in 0..operations {
let i = operations - i - 1;
buffer.undo();
log::info!("undoing operation {}", i);
log::info!("text:\n{}", buffer.text());
syntax_map.interpolate(&buffer);
syntax_map.reparse(language.clone(), &buffer);
reference_syntax_map.clear();
reference_syntax_map.reparse(language.clone(), &buffer);
assert_eq!(
syntax_map.layers(&buffer).len(),
reference_syntax_map.layers(&buffer).len(),
"wrong number of layers after undoing edit {i}"
);
}
let layers = syntax_map.layers(&buffer);
let reference_layers = reference_syntax_map.layers(&buffer);
for (edited_layer, reference_layer) in layers.into_iter().zip(reference_layers.into_iter())
{
assert_eq!(edited_layer.node.to_sexp(), reference_layer.node.to_sexp());
assert_eq!(edited_layer.node.range(), reference_layer.node.range());
}
}
fn check_interpolation(
old_syntax_map: &SyntaxSnapshot,
new_syntax_map: &SyntaxSnapshot,
old_buffer: &BufferSnapshot,
new_buffer: &BufferSnapshot,
) {
let edits = new_buffer
.edits_since::<usize>(&old_buffer.version())
.collect::<Vec<_>>();
for (old_layer, new_layer) in old_syntax_map
.layers
.iter()
.zip(new_syntax_map.layers.iter())
{
assert_eq!(old_layer.range, new_layer.range);
let Some(old_tree) = old_layer.content.tree() else { continue };
let Some(new_tree) = new_layer.content.tree() else { continue };
let old_start_byte = old_layer.range.start.to_offset(old_buffer);
let new_start_byte = new_layer.range.start.to_offset(new_buffer);
let old_start_point = old_layer.range.start.to_point(old_buffer).to_ts_point();
let new_start_point = new_layer.range.start.to_point(new_buffer).to_ts_point();
let old_node = old_tree.root_node_with_offset(old_start_byte, old_start_point);
let new_node = new_tree.root_node_with_offset(new_start_byte, new_start_point);
check_node_edits(
old_layer.depth,
&old_layer.range,
old_node,
new_node,
old_buffer,
new_buffer,
&edits,
);
}
fn check_node_edits(
depth: usize,
range: &Range<Anchor>,
old_node: Node,
new_node: Node,
old_buffer: &BufferSnapshot,
new_buffer: &BufferSnapshot,
edits: &[text::Edit<usize>],
) {
assert_eq!(old_node.kind(), new_node.kind());
let old_range = old_node.byte_range();
let new_range = new_node.byte_range();
let is_edited = edits
.iter()
.any(|edit| edit.new.start < new_range.end && edit.new.end > new_range.start);
if is_edited {
assert!(
new_node.has_changes(),
concat!(
"failed to mark node as edited.\n",
"layer depth: {}, old layer range: {:?}, new layer range: {:?},\n",
"node kind: {}, old node range: {:?}, new node range: {:?}",
),
depth,
range.to_offset(old_buffer),
range.to_offset(new_buffer),
new_node.kind(),
old_range,
new_range,
);
}
if !new_node.has_changes() {
assert_eq!(
old_buffer
.text_for_range(old_range.clone())
.collect::<String>(),
new_buffer
.text_for_range(new_range.clone())
.collect::<String>(),
concat!(
"mismatched text for node\n",
"layer depth: {}, old layer range: {:?}, new layer range: {:?},\n",
"node kind: {}, old node range:{:?}, new node range:{:?}",
),
depth,
range.to_offset(old_buffer),
range.to_offset(new_buffer),
new_node.kind(),
old_range,
new_range,
);
}
for i in 0..new_node.child_count() {
check_node_edits(
depth,
range,
old_node.child(i).unwrap(),
new_node.child(i).unwrap(),
old_buffer,
new_buffer,
edits,
)
}
}
}
fn test_edit_sequence(language_name: &str, steps: &[&str]) -> (Buffer, SyntaxMap) {
let registry = Arc::new(LanguageRegistry::test());
registry.add(Arc::new(rust_lang()));
registry.add(Arc::new(ruby_lang()));
registry.add(Arc::new(html_lang()));
registry.add(Arc::new(erb_lang()));
registry.add(Arc::new(markdown_lang()));
let language = registry.language_for_name(language_name).unwrap();
let mut buffer = Buffer::new(0, 0, Default::default());
let mut mutated_syntax_map = SyntaxMap::new();
mutated_syntax_map.set_language_registry(registry.clone());
mutated_syntax_map.reparse(language.clone(), &buffer);
for (i, marked_string) in steps.into_iter().enumerate() {
buffer.edit_via_marked_text(&marked_string.unindent());
// Reparse the syntax map
mutated_syntax_map.interpolate(&buffer);
mutated_syntax_map.reparse(language.clone(), &buffer);
// Create a second syntax map from scratch
let mut reference_syntax_map = SyntaxMap::new();
reference_syntax_map.set_language_registry(registry.clone());
reference_syntax_map.reparse(language.clone(), &buffer);
// Compare the mutated syntax map to the new syntax map
let mutated_layers = mutated_syntax_map.layers(&buffer);
let reference_layers = reference_syntax_map.layers(&buffer);
assert_eq!(
mutated_layers.len(),
reference_layers.len(),
"wrong number of layers at step {i}"
);
for (edited_layer, reference_layer) in
mutated_layers.into_iter().zip(reference_layers.into_iter())
{
assert_eq!(
edited_layer.node.to_sexp(),
reference_layer.node.to_sexp(),
"different layer at step {i}"
);
assert_eq!(
edited_layer.node.range(),
reference_layer.node.range(),
"different layer at step {i}"
);
}
}
(buffer, mutated_syntax_map)
}
fn html_lang() -> Language {
Language::new(
LanguageConfig {
name: "HTML".into(),
path_suffixes: vec!["html".to_string()],
..Default::default()
},
Some(tree_sitter_html::language()),
)
.with_highlights_query(
r#"
(tag_name) @tag
(erroneous_end_tag_name) @tag
(attribute_name) @property
"#,
)
.unwrap()
}
fn ruby_lang() -> Language {
Language::new(
LanguageConfig {
name: "Ruby".into(),
path_suffixes: vec!["rb".to_string()],
..Default::default()
},
Some(tree_sitter_ruby::language()),
)
.with_highlights_query(
r#"
["if" "do" "else" "end"] @keyword
(instance_variable) @ivar
"#,
)
.unwrap()
}
fn erb_lang() -> Language {
Language::new(
LanguageConfig {
name: "ERB".into(),
path_suffixes: vec!["erb".to_string()],
..Default::default()
},
Some(tree_sitter_embedded_template::language()),
)
.with_highlights_query(
r#"
["<%" "%>"] @keyword
"#,
)
.unwrap()
.with_injection_query(
r#"
((code) @content
(#set! "language" "ruby")
(#set! "combined"))
((content) @content
(#set! "language" "html")
(#set! "combined"))
"#,
)
.unwrap()
}
fn rust_lang() -> Language {
Language::new(
LanguageConfig {
name: "Rust".into(),
path_suffixes: vec!["rs".to_string()],
..Default::default()
},
Some(tree_sitter_rust::language()),
)
.with_highlights_query(
r#"
(field_identifier) @field
(struct_expression) @struct
"#,
)
.unwrap()
.with_injection_query(
r#"
(macro_invocation
(token_tree) @content
(#set! "language" "rust"))
"#,
)
.unwrap()
}
fn markdown_lang() -> Language {
Language::new(
LanguageConfig {
name: "Markdown".into(),
path_suffixes: vec!["md".into()],
..Default::default()
},
Some(tree_sitter_markdown::language()),
)
.with_injection_query(
r#"
(fenced_code_block
(info_string
(language) @language)
(code_fence_content) @content)
"#,
)
.unwrap()
}
fn range_for_text(buffer: &Buffer, text: &str) -> Range<usize> {
let start = buffer.as_rope().to_string().find(text).unwrap();
start..start + text.len()
}
fn assert_layers_for_range(
syntax_map: &SyntaxMap,
buffer: &BufferSnapshot,
range: Range<Point>,
expected_layers: &[&str],
) {
let layers = syntax_map
.layers_for_range(range, &buffer)
.collect::<Vec<_>>();
assert_eq!(
layers.len(),
expected_layers.len(),
"wrong number of layers"
);
for (i, (SyntaxLayerInfo { node, .. }, expected_s_exp)) in
layers.iter().zip(expected_layers.iter()).enumerate()
{
let actual_s_exp = node.to_sexp();
assert!(
string_contains_sequence(
&actual_s_exp,
&expected_s_exp.split("...").collect::<Vec<_>>()
),
"layer {i}:\n\nexpected: {expected_s_exp}\nactual: {actual_s_exp}",
);
}
}
fn assert_capture_ranges(
syntax_map: &SyntaxMap,
buffer: &BufferSnapshot,
highlight_query_capture_names: &[&str],
marked_string: &str,
) {
let mut actual_ranges = Vec::<Range<usize>>::new();
let captures = syntax_map.captures(0..buffer.len(), buffer, |grammar| {
grammar.highlights_query.as_ref()
});
let queries = captures
.grammars()
.iter()
.map(|grammar| grammar.highlights_query.as_ref().unwrap())
.collect::<Vec<_>>();
for capture in captures {
let name = &queries[capture.grammar_index].capture_names()[capture.index as usize];
if highlight_query_capture_names.contains(&name.as_str()) {
actual_ranges.push(capture.node.byte_range());
}
}
let (text, expected_ranges) = marked_text_ranges(&marked_string.unindent(), false);
assert_eq!(text, buffer.text());
assert_eq!(actual_ranges, expected_ranges);
}
pub fn string_contains_sequence(text: &str, parts: &[&str]) -> bool {
let mut last_part_end = 0;
for part in parts {
if let Some(start_ix) = text[last_part_end..].find(part) {
last_part_end = start_ix + part.len();
} else {
return false;
}
}
true
}
}