zed/crates/gpui/src/key_dispatch.rs
Piotr Osiewicz f4d7b3e3b1
chore: Bump Rust version to 1.76 (#7592)
Release Notes:

- N/A
2024-02-09 10:45:39 +02:00

514 lines
17 KiB
Rust

/// KeyDispatch is where GPUI deals with binding actions to key events.
///
/// The key pieces to making a key binding work are to define an action,
/// implement a method that takes that action as a type parameter,
/// and then to register the action during render on a focused node
/// with a keymap context:
///
/// ```rust
/// actions!(editor,[Undo, Redo]);;
///
/// impl Editor {
/// fn undo(&mut self, _: &Undo, _cx: &mut ViewContext<Self>) { ... }
/// fn redo(&mut self, _: &Redo, _cx: &mut ViewContext<Self>) { ... }
/// }
///
/// impl Render for Editor {
/// fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
/// div()
/// .track_focus(&self.focus_handle)
/// .keymap_context("Editor")
/// .on_action(cx.listener(Editor::undo))
/// .on_action(cx.listener(Editor::redo))
/// ...
/// }
/// }
///```
///
/// The keybindings themselves are managed independently by calling cx.bind_keys().
/// (Though mostly when developing Zed itself, you just need to add a new line to
/// assets/keymaps/default.json).
///
/// ```rust
/// cx.bind_keys([
/// KeyBinding::new("cmd-z", Editor::undo, Some("Editor")),
/// KeyBinding::new("cmd-shift-z", Editor::redo, Some("Editor")),
/// ])
/// ```
///
/// With all of this in place, GPUI will ensure that if you have an Editor that contains
/// the focus, hitting cmd-z will Undo.
///
/// In real apps, it is a little more complicated than this, because typically you have
/// several nested views that each register keyboard handlers. In this case action matching
/// bubbles up from the bottom. For example in Zed, the Workspace is the top-level view, which contains Pane's, which contain Editors. If there are conflicting keybindings defined
/// then the Editor's bindings take precedence over the Pane's bindings, which take precedence over the Workspace.
///
/// In GPUI, keybindings are not limited to just single keystrokes, you can define
/// sequences by separating the keys with a space:
///
/// KeyBinding::new("cmd-k left", pane::SplitLeft, Some("Pane"))
///
use crate::{
Action, ActionRegistry, DispatchPhase, ElementContext, EntityId, FocusId, KeyBinding,
KeyContext, Keymap, KeymatchResult, Keystroke, KeystrokeMatcher, WindowContext,
};
use collections::FxHashMap;
use smallvec::{smallvec, SmallVec};
use std::{
any::{Any, TypeId},
cell::RefCell,
mem,
rc::Rc,
};
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub(crate) struct DispatchNodeId(usize);
pub(crate) struct DispatchTree {
node_stack: Vec<DispatchNodeId>,
pub(crate) context_stack: Vec<KeyContext>,
nodes: Vec<DispatchNode>,
focusable_node_ids: FxHashMap<FocusId, DispatchNodeId>,
view_node_ids: FxHashMap<EntityId, DispatchNodeId>,
keystroke_matchers: FxHashMap<SmallVec<[KeyContext; 4]>, KeystrokeMatcher>,
keymap: Rc<RefCell<Keymap>>,
action_registry: Rc<ActionRegistry>,
}
#[derive(Default)]
pub(crate) struct DispatchNode {
pub key_listeners: Vec<KeyListener>,
pub action_listeners: Vec<DispatchActionListener>,
pub context: Option<KeyContext>,
focus_id: Option<FocusId>,
view_id: Option<EntityId>,
parent: Option<DispatchNodeId>,
}
type KeyListener = Rc<dyn Fn(&dyn Any, DispatchPhase, &mut ElementContext)>;
#[derive(Clone)]
pub(crate) struct DispatchActionListener {
pub(crate) action_type: TypeId,
pub(crate) listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext)>,
}
impl DispatchTree {
pub fn new(keymap: Rc<RefCell<Keymap>>, action_registry: Rc<ActionRegistry>) -> Self {
Self {
node_stack: Vec::new(),
context_stack: Vec::new(),
nodes: Vec::new(),
focusable_node_ids: FxHashMap::default(),
view_node_ids: FxHashMap::default(),
keystroke_matchers: FxHashMap::default(),
keymap,
action_registry,
}
}
pub fn clear(&mut self) {
self.node_stack.clear();
self.context_stack.clear();
self.nodes.clear();
self.focusable_node_ids.clear();
self.view_node_ids.clear();
self.keystroke_matchers.clear();
}
pub fn push_node(
&mut self,
context: Option<KeyContext>,
focus_id: Option<FocusId>,
view_id: Option<EntityId>,
) {
let parent = self.node_stack.last().copied();
let node_id = DispatchNodeId(self.nodes.len());
self.nodes.push(DispatchNode {
parent,
focus_id,
view_id,
..Default::default()
});
self.node_stack.push(node_id);
if let Some(context) = context {
self.active_node().context = Some(context.clone());
self.context_stack.push(context);
}
if let Some(focus_id) = focus_id {
self.focusable_node_ids.insert(focus_id, node_id);
}
if let Some(view_id) = view_id {
self.view_node_ids.insert(view_id, node_id);
}
}
pub fn pop_node(&mut self) {
let node = &self.nodes[self.active_node_id().0];
if node.context.is_some() {
self.context_stack.pop();
}
self.node_stack.pop();
}
fn move_node(&mut self, source: &mut DispatchNode) {
self.push_node(source.context.take(), source.focus_id, source.view_id);
let target = self.active_node();
target.key_listeners = mem::take(&mut source.key_listeners);
target.action_listeners = mem::take(&mut source.action_listeners);
}
pub fn reuse_view(&mut self, view_id: EntityId, source: &mut Self) -> SmallVec<[EntityId; 8]> {
let view_source_node_id = source
.view_node_ids
.get(&view_id)
.expect("view should exist in previous dispatch tree");
let view_source_node = &mut source.nodes[view_source_node_id.0];
self.move_node(view_source_node);
let mut grafted_view_ids = smallvec![view_id];
let mut source_stack = vec![*view_source_node_id];
for (source_node_id, source_node) in source
.nodes
.iter_mut()
.enumerate()
.skip(view_source_node_id.0 + 1)
{
let source_node_id = DispatchNodeId(source_node_id);
while let Some(source_ancestor) = source_stack.last() {
if source_node.parent != Some(*source_ancestor) {
source_stack.pop();
self.pop_node();
} else {
break;
}
}
if source_stack.is_empty() {
break;
} else {
source_stack.push(source_node_id);
self.move_node(source_node);
if let Some(view_id) = source_node.view_id {
grafted_view_ids.push(view_id);
}
}
}
while !source_stack.is_empty() {
source_stack.pop();
self.pop_node();
}
grafted_view_ids
}
pub fn clear_pending_keystrokes(&mut self) {
self.keystroke_matchers.clear();
}
/// Preserve keystroke matchers from previous frames to support multi-stroke
/// bindings across multiple frames.
pub fn preserve_pending_keystrokes(&mut self, old_tree: &mut Self, focus_id: Option<FocusId>) {
if let Some(node_id) = focus_id.and_then(|focus_id| self.focusable_node_id(focus_id)) {
let dispatch_path = self.dispatch_path(node_id);
self.context_stack.clear();
for node_id in dispatch_path {
let node = self.node(node_id);
if let Some(context) = node.context.clone() {
self.context_stack.push(context);
}
if let Some((context_stack, matcher)) = old_tree
.keystroke_matchers
.remove_entry(self.context_stack.as_slice())
{
self.keystroke_matchers.insert(context_stack, matcher);
}
}
}
}
pub fn on_key_event(&mut self, listener: KeyListener) {
self.active_node().key_listeners.push(listener);
}
pub fn on_action(
&mut self,
action_type: TypeId,
listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext)>,
) {
self.active_node()
.action_listeners
.push(DispatchActionListener {
action_type,
listener,
});
}
pub fn focus_contains(&self, parent: FocusId, child: FocusId) -> bool {
if parent == child {
return true;
}
if let Some(parent_node_id) = self.focusable_node_ids.get(&parent) {
let mut current_node_id = self.focusable_node_ids.get(&child).copied();
while let Some(node_id) = current_node_id {
if node_id == *parent_node_id {
return true;
}
current_node_id = self.nodes[node_id.0].parent;
}
}
false
}
pub fn available_actions(&self, target: DispatchNodeId) -> Vec<Box<dyn Action>> {
let mut actions = Vec::<Box<dyn Action>>::new();
for node_id in self.dispatch_path(target) {
let node = &self.nodes[node_id.0];
for DispatchActionListener { action_type, .. } in &node.action_listeners {
if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id())
{
// Intentionally silence these errors without logging.
// If an action cannot be built by default, it's not available.
let action = self.action_registry.build_action_type(action_type).ok();
if let Some(action) = action {
actions.insert(ix, action);
}
}
}
}
actions
}
pub fn is_action_available(&self, action: &dyn Action, target: DispatchNodeId) -> bool {
for node_id in self.dispatch_path(target) {
let node = &self.nodes[node_id.0];
if node
.action_listeners
.iter()
.any(|listener| listener.action_type == action.as_any().type_id())
{
return true;
}
}
false
}
pub fn bindings_for_action(
&self,
action: &dyn Action,
context_stack: &[KeyContext],
) -> Vec<KeyBinding> {
let keymap = self.keymap.borrow();
keymap
.bindings_for_action(action)
.filter(|binding| {
for i in 0..context_stack.len() {
let context = &context_stack[0..=i];
if keymap.binding_enabled(binding, context) {
return true;
}
}
false
})
.cloned()
.collect()
}
// dispatch_key pushes the next keystroke into any key binding matchers.
// any matching bindings are returned in the order that they should be dispatched:
// * First by length of binding (so if you have a binding for "b" and "ab", the "ab" binding fires first)
// * Secondly by depth in the tree (so if Editor has a binding for "b" and workspace a
// binding for "b", the Editor action fires first).
pub fn dispatch_key(
&mut self,
keystroke: &Keystroke,
dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
) -> KeymatchResult {
let mut bindings = SmallVec::<[KeyBinding; 1]>::new();
let mut pending = false;
let mut context_stack: SmallVec<[KeyContext; 4]> = SmallVec::new();
for node_id in dispatch_path {
let node = self.node(*node_id);
if let Some(context) = node.context.clone() {
context_stack.push(context);
}
}
while !context_stack.is_empty() {
let keystroke_matcher = self
.keystroke_matchers
.entry(context_stack.clone())
.or_insert_with(|| KeystrokeMatcher::new(self.keymap.clone()));
let result = keystroke_matcher.match_keystroke(keystroke, &context_stack);
if result.pending && !pending && !bindings.is_empty() {
context_stack.pop();
continue;
}
pending = result.pending || pending;
for new_binding in result.bindings {
match bindings
.iter()
.position(|el| el.keystrokes.len() < new_binding.keystrokes.len())
{
Some(idx) => {
bindings.insert(idx, new_binding);
}
None => bindings.push(new_binding),
}
}
context_stack.pop();
}
KeymatchResult { bindings, pending }
}
pub fn has_pending_keystrokes(&self) -> bool {
self.keystroke_matchers
.iter()
.any(|(_, matcher)| matcher.has_pending_keystrokes())
}
pub fn dispatch_path(&self, target: DispatchNodeId) -> SmallVec<[DispatchNodeId; 32]> {
let mut dispatch_path: SmallVec<[DispatchNodeId; 32]> = SmallVec::new();
let mut current_node_id = Some(target);
while let Some(node_id) = current_node_id {
dispatch_path.push(node_id);
current_node_id = self.nodes[node_id.0].parent;
}
dispatch_path.reverse(); // Reverse the path so it goes from the root to the focused node.
dispatch_path
}
pub fn focus_path(&self, focus_id: FocusId) -> SmallVec<[FocusId; 8]> {
let mut focus_path: SmallVec<[FocusId; 8]> = SmallVec::new();
let mut current_node_id = self.focusable_node_ids.get(&focus_id).copied();
while let Some(node_id) = current_node_id {
let node = self.node(node_id);
if let Some(focus_id) = node.focus_id {
focus_path.push(focus_id);
}
current_node_id = node.parent;
}
focus_path.reverse(); // Reverse the path so it goes from the root to the focused node.
focus_path
}
pub fn view_path(&self, view_id: EntityId) -> SmallVec<[EntityId; 8]> {
let mut view_path: SmallVec<[EntityId; 8]> = SmallVec::new();
let mut current_node_id = self.view_node_ids.get(&view_id).copied();
while let Some(node_id) = current_node_id {
let node = self.node(node_id);
if let Some(view_id) = node.view_id {
view_path.push(view_id);
}
current_node_id = node.parent;
}
view_path.reverse(); // Reverse the path so it goes from the root to the view node.
view_path
}
pub fn node(&self, node_id: DispatchNodeId) -> &DispatchNode {
&self.nodes[node_id.0]
}
fn active_node(&mut self) -> &mut DispatchNode {
let active_node_id = self.active_node_id();
&mut self.nodes[active_node_id.0]
}
pub fn focusable_node_id(&self, target: FocusId) -> Option<DispatchNodeId> {
self.focusable_node_ids.get(&target).copied()
}
pub fn root_node_id(&self) -> DispatchNodeId {
debug_assert!(!self.nodes.is_empty());
DispatchNodeId(0)
}
fn active_node_id(&self) -> DispatchNodeId {
*self.node_stack.last().unwrap()
}
}
#[cfg(test)]
mod tests {
use std::{cell::RefCell, rc::Rc};
use crate::{Action, ActionRegistry, DispatchTree, KeyBinding, KeyContext, Keymap};
#[derive(PartialEq, Eq)]
struct TestAction;
impl Action for TestAction {
fn name(&self) -> &'static str {
"test::TestAction"
}
fn debug_name() -> &'static str
where
Self: ::std::marker::Sized,
{
"test::TestAction"
}
fn partial_eq(&self, action: &dyn Action) -> bool {
action
.as_any()
.downcast_ref::<Self>()
.map_or(false, |a| self == a)
}
fn boxed_clone(&self) -> std::boxed::Box<dyn Action> {
Box::new(TestAction)
}
fn as_any(&self) -> &dyn ::std::any::Any {
self
}
fn build(_value: serde_json::Value) -> anyhow::Result<Box<dyn Action>>
where
Self: Sized,
{
Ok(Box::new(TestAction))
}
}
#[test]
fn test_keybinding_for_action_bounds() {
let keymap = Keymap::new(vec![KeyBinding::new(
"cmd-n",
TestAction,
Some("ProjectPanel"),
)]);
let mut registry = ActionRegistry::default();
registry.load_action::<TestAction>();
let keymap = Rc::new(RefCell::new(keymap));
let tree = DispatchTree::new(keymap, Rc::new(registry));
let contexts = vec![
KeyContext::parse("Workspace").unwrap(),
KeyContext::parse("ProjectPanel").unwrap(),
];
let keybinding = tree.bindings_for_action(&TestAction, &contexts);
assert!(keybinding[0].action.partial_eq(&TestAction))
}
}