zed/crates/gpui/src/window.rs
Conrad Irwin 9bd5ebb74b
Revert "Introduce a new ToggleGraphicsProfiler command (#7607)" (#8567)
This reverts commit 0cebf68306.

Although this thing is very cool, it is a top source of crashes.

Example crash:
```
Segmentation fault: 11 on thread 26
  objc_retain +16
  invocation function for block in Overlay::onCommandBufferCommit(id<MTLCommandBuffer>) +60
  MTLDispatchListApply +52
```

Release Notes:

- Removed "Toggle Graphics Profiler" as it crashes too much.
2024-02-28 16:39:51 -07:00

2832 lines
96 KiB
Rust

use crate::{
px, size, transparent_black, Action, AnyDrag, AnyView, AppContext, Arena, AsyncWindowContext,
AvailableSpace, Bounds, Context, Corners, CursorStyle, DispatchActionListener, DispatchNodeId,
DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, Flatten,
Global, GlobalElementId, Hsla, KeyBinding, KeyContext, KeyDownEvent, KeyMatch, KeymatchResult,
Keystroke, KeystrokeEvent, Model, ModelContext, Modifiers, MouseButton, MouseMoveEvent,
MouseUpEvent, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput, PlatformWindow, Point,
PromptLevel, Render, ScaledPixels, SharedString, Size, SubscriberSet, Subscription,
TaffyLayoutEngine, Task, View, VisualContext, WeakView, WindowAppearance, WindowBounds,
WindowOptions, WindowTextSystem,
};
use anyhow::{anyhow, Context as _, Result};
use collections::FxHashSet;
use derive_more::{Deref, DerefMut};
use futures::channel::oneshot;
use parking_lot::RwLock;
use slotmap::SlotMap;
use smallvec::SmallVec;
use std::{
any::{Any, TypeId},
borrow::{Borrow, BorrowMut},
cell::{Cell, RefCell},
fmt::{Debug, Display},
future::Future,
hash::{Hash, Hasher},
marker::PhantomData,
mem,
rc::Rc,
sync::{
atomic::{AtomicUsize, Ordering::SeqCst},
Arc,
},
time::{Duration, Instant},
};
use util::{measure, ResultExt};
mod element_cx;
pub use element_cx::*;
const ACTIVE_DRAG_Z_INDEX: u16 = 1;
/// A global stacking order, which is created by stacking successive z-index values.
/// Each z-index will always be interpreted in the context of its parent z-index.
#[derive(Debug, Deref, DerefMut, Clone, Ord, PartialOrd, PartialEq, Eq, Default)]
pub struct StackingOrder(SmallVec<[StackingContext; 64]>);
/// A single entry in a primitive's z-index stacking order
#[derive(Clone, Ord, PartialOrd, PartialEq, Eq, Default)]
pub struct StackingContext {
pub(crate) z_index: u16,
pub(crate) id: u16,
}
impl std::fmt::Debug for StackingContext {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{{{}.{}}} ", self.z_index, self.id)
}
}
/// Represents the two different phases when dispatching events.
#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
pub enum DispatchPhase {
/// After the capture phase comes the bubble phase, in which mouse event listeners are
/// invoked front to back and keyboard event listeners are invoked from the focused element
/// to the root of the element tree. This is the phase you'll most commonly want to use when
/// registering event listeners.
#[default]
Bubble,
/// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
/// listeners are invoked from the root of the tree downward toward the focused element. This phase
/// is used for special purposes such as clearing the "pressed" state for click events. If
/// you stop event propagation during this phase, you need to know what you're doing. Handlers
/// outside of the immediate region may rely on detecting non-local events during this phase.
Capture,
}
impl DispatchPhase {
/// Returns true if this represents the "bubble" phase.
pub fn bubble(self) -> bool {
self == DispatchPhase::Bubble
}
/// Returns true if this represents the "capture" phase.
pub fn capture(self) -> bool {
self == DispatchPhase::Capture
}
}
type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
struct FocusEvent {
previous_focus_path: SmallVec<[FocusId; 8]>,
current_focus_path: SmallVec<[FocusId; 8]>,
}
slotmap::new_key_type! {
/// A globally unique identifier for a focusable element.
pub struct FocusId;
}
thread_local! {
pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(8 * 1024 * 1024));
}
impl FocusId {
/// Obtains whether the element associated with this handle is currently focused.
pub fn is_focused(&self, cx: &WindowContext) -> bool {
cx.window.focus == Some(*self)
}
/// Obtains whether the element associated with this handle contains the focused
/// element or is itself focused.
pub fn contains_focused(&self, cx: &WindowContext) -> bool {
cx.focused()
.map_or(false, |focused| self.contains(focused.id, cx))
}
/// Obtains whether the element associated with this handle is contained within the
/// focused element or is itself focused.
pub fn within_focused(&self, cx: &WindowContext) -> bool {
let focused = cx.focused();
focused.map_or(false, |focused| focused.id.contains(*self, cx))
}
/// Obtains whether this handle contains the given handle in the most recently rendered frame.
pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
cx.window
.rendered_frame
.dispatch_tree
.focus_contains(*self, other)
}
}
/// A handle which can be used to track and manipulate the focused element in a window.
pub struct FocusHandle {
pub(crate) id: FocusId,
handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
}
impl std::fmt::Debug for FocusHandle {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("FocusHandle({:?})", self.id))
}
}
impl FocusHandle {
pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
let id = handles.write().insert(AtomicUsize::new(1));
Self {
id,
handles: handles.clone(),
}
}
pub(crate) fn for_id(
id: FocusId,
handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
) -> Option<Self> {
let lock = handles.read();
let ref_count = lock.get(id)?;
if ref_count.load(SeqCst) == 0 {
None
} else {
ref_count.fetch_add(1, SeqCst);
Some(Self {
id,
handles: handles.clone(),
})
}
}
/// Moves the focus to the element associated with this handle.
pub fn focus(&self, cx: &mut WindowContext) {
cx.focus(self)
}
/// Obtains whether the element associated with this handle is currently focused.
pub fn is_focused(&self, cx: &WindowContext) -> bool {
self.id.is_focused(cx)
}
/// Obtains whether the element associated with this handle contains the focused
/// element or is itself focused.
pub fn contains_focused(&self, cx: &WindowContext) -> bool {
self.id.contains_focused(cx)
}
/// Obtains whether the element associated with this handle is contained within the
/// focused element or is itself focused.
pub fn within_focused(&self, cx: &WindowContext) -> bool {
self.id.within_focused(cx)
}
/// Obtains whether this handle contains the given handle in the most recently rendered frame.
pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
self.id.contains(other.id, cx)
}
}
impl Clone for FocusHandle {
fn clone(&self) -> Self {
Self::for_id(self.id, &self.handles).unwrap()
}
}
impl PartialEq for FocusHandle {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for FocusHandle {}
impl Drop for FocusHandle {
fn drop(&mut self) {
self.handles
.read()
.get(self.id)
.unwrap()
.fetch_sub(1, SeqCst);
}
}
/// FocusableView allows users of your view to easily
/// focus it (using cx.focus_view(view))
pub trait FocusableView: 'static + Render {
/// Returns the focus handle associated with this view.
fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
}
/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
/// where the lifecycle of the view is handled by another view.
pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
pub struct DismissEvent;
type FrameCallback = Box<dyn FnOnce(&mut WindowContext)>;
// Holds the state for a specific window.
#[doc(hidden)]
pub struct Window {
pub(crate) handle: AnyWindowHandle,
pub(crate) removed: bool,
pub(crate) platform_window: Box<dyn PlatformWindow>,
display_id: DisplayId,
sprite_atlas: Arc<dyn PlatformAtlas>,
text_system: Arc<WindowTextSystem>,
pub(crate) rem_size: Pixels,
pub(crate) viewport_size: Size<Pixels>,
layout_engine: Option<TaffyLayoutEngine>,
pub(crate) root_view: Option<AnyView>,
pub(crate) element_id_stack: GlobalElementId,
pub(crate) rendered_frame: Frame,
pub(crate) next_frame: Frame,
next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
pub(crate) dirty_views: FxHashSet<EntityId>,
pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
focus_lost_listeners: SubscriberSet<(), AnyObserver>,
default_prevented: bool,
mouse_position: Point<Pixels>,
modifiers: Modifiers,
scale_factor: f32,
bounds: WindowBounds,
bounds_observers: SubscriberSet<(), AnyObserver>,
appearance: WindowAppearance,
appearance_observers: SubscriberSet<(), AnyObserver>,
active: Rc<Cell<bool>>,
pub(crate) dirty: Rc<Cell<bool>>,
pub(crate) needs_present: Rc<Cell<bool>>,
pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
pub(crate) refreshing: bool,
pub(crate) drawing: bool,
activation_observers: SubscriberSet<(), AnyObserver>,
pub(crate) focus: Option<FocusId>,
focus_enabled: bool,
pending_input: Option<PendingInput>,
}
#[derive(Default, Debug)]
struct PendingInput {
keystrokes: SmallVec<[Keystroke; 1]>,
bindings: SmallVec<[KeyBinding; 1]>,
focus: Option<FocusId>,
timer: Option<Task<()>>,
}
impl PendingInput {
fn input(&self) -> String {
self.keystrokes
.iter()
.flat_map(|k| k.ime_key.clone())
.collect::<Vec<String>>()
.join("")
}
fn used_by_binding(&self, binding: &KeyBinding) -> bool {
if self.keystrokes.is_empty() {
return true;
}
let keystroke = &self.keystrokes[0];
for candidate in keystroke.match_candidates() {
if binding.match_keystrokes(&[candidate]) == KeyMatch::Pending {
return true;
}
}
false
}
}
pub(crate) struct ElementStateBox {
pub(crate) inner: Box<dyn Any>,
pub(crate) parent_view_id: EntityId,
#[cfg(debug_assertions)]
pub(crate) type_name: &'static str,
}
impl Window {
pub(crate) fn new(
handle: AnyWindowHandle,
options: WindowOptions,
cx: &mut AppContext,
) -> Self {
let platform_window = cx.platform.open_window(handle, options);
let display_id = platform_window.display().id();
let sprite_atlas = platform_window.sprite_atlas();
let mouse_position = platform_window.mouse_position();
let modifiers = platform_window.modifiers();
let content_size = platform_window.content_size();
let scale_factor = platform_window.scale_factor();
let bounds = platform_window.bounds();
let appearance = platform_window.appearance();
let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
let dirty = Rc::new(Cell::new(true));
let active = Rc::new(Cell::new(false));
let needs_present = Rc::new(Cell::new(false));
let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
platform_window.on_close(Box::new({
let mut cx = cx.to_async();
move || {
let _ = handle.update(&mut cx, |_, cx| cx.remove_window());
}
}));
platform_window.on_request_frame(Box::new({
let mut cx = cx.to_async();
let dirty = dirty.clone();
let active = active.clone();
let needs_present = needs_present.clone();
let next_frame_callbacks = next_frame_callbacks.clone();
let last_input_timestamp = last_input_timestamp.clone();
move || {
let next_frame_callbacks = next_frame_callbacks.take();
if !next_frame_callbacks.is_empty() {
handle
.update(&mut cx, |_, cx| {
for callback in next_frame_callbacks {
callback(cx);
}
})
.log_err();
}
// Keep presenting the current scene for 1 extra second since the
// last input to prevent the display from underclocking the refresh rate.
let needs_present = needs_present.get()
|| (active.get()
&& last_input_timestamp.get().elapsed() < Duration::from_secs(1));
if dirty.get() {
measure("frame duration", || {
handle
.update(&mut cx, |_, cx| {
cx.draw();
cx.present();
})
.log_err();
})
} else if needs_present {
handle.update(&mut cx, |_, cx| cx.present()).log_err();
}
}
}));
platform_window.on_resize(Box::new({
let mut cx = cx.to_async();
move |_, _| {
handle
.update(&mut cx, |_, cx| cx.window_bounds_changed())
.log_err();
}
}));
platform_window.on_moved(Box::new({
let mut cx = cx.to_async();
move || {
handle
.update(&mut cx, |_, cx| cx.window_bounds_changed())
.log_err();
}
}));
platform_window.on_appearance_changed(Box::new({
let mut cx = cx.to_async();
move || {
handle
.update(&mut cx, |_, cx| cx.appearance_changed())
.log_err();
}
}));
platform_window.on_active_status_change(Box::new({
let mut cx = cx.to_async();
move |active| {
handle
.update(&mut cx, |_, cx| {
cx.window.active.set(active);
cx.window
.activation_observers
.clone()
.retain(&(), |callback| callback(cx));
})
.log_err();
}
}));
platform_window.on_input({
let mut cx = cx.to_async();
Box::new(move |event| {
handle
.update(&mut cx, |_, cx| cx.dispatch_event(event))
.log_err()
.unwrap_or(false)
})
});
Window {
handle,
removed: false,
platform_window,
display_id,
sprite_atlas,
text_system,
rem_size: px(16.),
viewport_size: content_size,
layout_engine: Some(TaffyLayoutEngine::new()),
root_view: None,
element_id_stack: GlobalElementId::default(),
rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
next_frame_callbacks,
dirty_views: FxHashSet::default(),
focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
focus_listeners: SubscriberSet::new(),
focus_lost_listeners: SubscriberSet::new(),
default_prevented: true,
mouse_position,
modifiers,
scale_factor,
bounds,
bounds_observers: SubscriberSet::new(),
appearance,
appearance_observers: SubscriberSet::new(),
active,
dirty,
needs_present,
last_input_timestamp,
refreshing: false,
drawing: false,
activation_observers: SubscriberSet::new(),
focus: None,
focus_enabled: true,
pending_input: None,
}
}
fn new_focus_listener(
&mut self,
value: AnyWindowFocusListener,
) -> (Subscription, impl FnOnce()) {
self.focus_listeners.insert((), value)
}
}
/// Indicates which region of the window is visible. Content falling outside of this mask will not be
/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
/// to leave room to support more complex shapes in the future.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
#[repr(C)]
pub struct ContentMask<P: Clone + Default + Debug> {
/// The bounds
pub bounds: Bounds<P>,
}
impl ContentMask<Pixels> {
/// Scale the content mask's pixel units by the given scaling factor.
pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
ContentMask {
bounds: self.bounds.scale(factor),
}
}
/// Intersect the content mask with the given content mask.
pub fn intersect(&self, other: &Self) -> Self {
let bounds = self.bounds.intersect(&other.bounds);
ContentMask { bounds }
}
}
/// Provides access to application state in the context of a single window. Derefs
/// to an [`AppContext`], so you can also pass a [`WindowContext`] to any method that takes
/// an [`AppContext`] and call any [`AppContext`] methods.
pub struct WindowContext<'a> {
pub(crate) app: &'a mut AppContext,
pub(crate) window: &'a mut Window,
}
impl<'a> WindowContext<'a> {
pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
Self { app, window }
}
/// Obtain a handle to the window that belongs to this context.
pub fn window_handle(&self) -> AnyWindowHandle {
self.window.handle
}
/// Mark the window as dirty, scheduling it to be redrawn on the next frame.
pub fn refresh(&mut self) {
if !self.window.drawing {
self.window.refreshing = true;
self.window.dirty.set(true);
}
}
/// Close this window.
pub fn remove_window(&mut self) {
self.window.removed = true;
}
/// Obtain a new [`FocusHandle`], which allows you to track and manipulate the keyboard focus
/// for elements rendered within this window.
pub fn focus_handle(&mut self) -> FocusHandle {
FocusHandle::new(&self.window.focus_handles)
}
/// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
pub fn focused(&self) -> Option<FocusHandle> {
self.window
.focus
.and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
}
/// Move focus to the element associated with the given [`FocusHandle`].
pub fn focus(&mut self, handle: &FocusHandle) {
if !self.window.focus_enabled || self.window.focus == Some(handle.id) {
return;
}
self.window.focus = Some(handle.id);
self.window
.rendered_frame
.dispatch_tree
.clear_pending_keystrokes();
self.refresh();
}
/// Remove focus from all elements within this context's window.
pub fn blur(&mut self) {
if !self.window.focus_enabled {
return;
}
self.window.focus = None;
self.refresh();
}
/// Blur the window and don't allow anything in it to be focused again.
pub fn disable_focus(&mut self) {
self.blur();
self.window.focus_enabled = false;
}
/// Accessor for the text system.
pub fn text_system(&self) -> &Arc<WindowTextSystem> {
&self.window.text_system
}
/// Dispatch the given action on the currently focused element.
pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
let focus_handle = self.focused();
self.defer(move |cx| {
let node_id = focus_handle
.and_then(|handle| {
cx.window
.rendered_frame
.dispatch_tree
.focusable_node_id(handle.id)
})
.unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
cx.propagate_event = true;
cx.dispatch_action_on_node(node_id, action);
})
}
pub(crate) fn dispatch_keystroke_observers(
&mut self,
event: &dyn Any,
action: Option<Box<dyn Action>>,
) {
let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
return;
};
self.keystroke_observers
.clone()
.retain(&(), move |callback| {
(callback)(
&KeystrokeEvent {
keystroke: key_down_event.keystroke.clone(),
action: action.as_ref().map(|action| action.boxed_clone()),
},
self,
);
true
});
}
pub(crate) fn clear_pending_keystrokes(&mut self) {
self.window
.rendered_frame
.dispatch_tree
.clear_pending_keystrokes();
self.window
.next_frame
.dispatch_tree
.clear_pending_keystrokes();
}
/// Schedules the given function to be run at the end of the current effect cycle, allowing entities
/// that are currently on the stack to be returned to the app.
pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
let handle = self.window.handle;
self.app.defer(move |cx| {
handle.update(cx, |_, cx| f(cx)).ok();
});
}
/// Subscribe to events emitted by a model or view.
/// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
/// The callback will be invoked a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a window context for the current window.
pub fn subscribe<Emitter, E, Evt>(
&mut self,
entity: &E,
mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
) -> Subscription
where
Emitter: EventEmitter<Evt>,
E: Entity<Emitter>,
Evt: 'static,
{
let entity_id = entity.entity_id();
let entity = entity.downgrade();
let window_handle = self.window.handle;
self.app.new_subscription(
entity_id,
(
TypeId::of::<Evt>(),
Box::new(move |event, cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&entity) {
let event = event.downcast_ref().expect("invalid event type");
on_event(handle, event, cx);
true
} else {
false
}
})
.unwrap_or(false)
}),
),
)
}
/// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
/// await points in async code.
pub fn to_async(&self) -> AsyncWindowContext {
AsyncWindowContext::new(self.app.to_async(), self.window.handle)
}
/// Schedule the given closure to be run directly after the current frame is rendered.
pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
RefCell::borrow_mut(&self.window.next_frame_callbacks).push(Box::new(callback));
}
/// Spawn the future returned by the given closure on the application thread pool.
/// The closure is provided a handle to the current window and an `AsyncWindowContext` for
/// use within your future.
pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
where
R: 'static,
Fut: Future<Output = R> + 'static,
{
self.app
.spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
}
/// Updates the global of the given type. The given closure is given simultaneous mutable
/// access both to the global and the context.
pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
where
G: Global,
{
let mut global = self.app.lease_global::<G>();
let result = f(&mut global, self);
self.app.end_global_lease(global);
result
}
fn window_bounds_changed(&mut self) {
self.window.scale_factor = self.window.platform_window.scale_factor();
self.window.viewport_size = self.window.platform_window.content_size();
self.window.bounds = self.window.platform_window.bounds();
self.window.display_id = self.window.platform_window.display().id();
self.refresh();
self.window
.bounds_observers
.clone()
.retain(&(), |callback| callback(self));
}
/// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
pub fn window_bounds(&self) -> WindowBounds {
self.window.bounds
}
fn appearance_changed(&mut self) {
self.window.appearance = self.window.platform_window.appearance();
self.window
.appearance_observers
.clone()
.retain(&(), |callback| callback(self));
}
/// Returns the appearance of the current window.
pub fn appearance(&self) -> WindowAppearance {
self.window.appearance
}
/// Returns the size of the drawable area within the window.
pub fn viewport_size(&self) -> Size<Pixels> {
self.window.viewport_size
}
/// Returns whether this window is focused by the operating system (receiving key events).
pub fn is_window_active(&self) -> bool {
self.window.active.get()
}
/// Toggle zoom on the window.
pub fn zoom_window(&self) {
self.window.platform_window.zoom();
}
/// Updates the window's title at the platform level.
pub fn set_window_title(&mut self, title: &str) {
self.window.platform_window.set_title(title);
}
/// Mark the window as dirty at the platform level.
pub fn set_window_edited(&mut self, edited: bool) {
self.window.platform_window.set_edited(edited);
}
/// Determine the display on which the window is visible.
pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
self.platform
.displays()
.into_iter()
.find(|display| display.id() == self.window.display_id)
}
/// Show the platform character palette.
pub fn show_character_palette(&self) {
self.window.platform_window.show_character_palette();
}
/// The scale factor of the display associated with the window. For example, it could
/// return 2.0 for a "retina" display, indicating that each logical pixel should actually
/// be rendered as two pixels on screen.
pub fn scale_factor(&self) -> f32 {
self.window.scale_factor
}
/// The size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn rem_size(&self) -> Pixels {
self.window.rem_size
}
/// Sets the size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
self.window.rem_size = rem_size.into();
}
/// The line height associated with the current text style.
pub fn line_height(&self) -> Pixels {
let rem_size = self.rem_size();
let text_style = self.text_style();
text_style
.line_height
.to_pixels(text_style.font_size, rem_size)
}
/// Call to prevent the default action of an event. Currently only used to prevent
/// parent elements from becoming focused on mouse down.
pub fn prevent_default(&mut self) {
self.window.default_prevented = true;
}
/// Obtain whether default has been prevented for the event currently being dispatched.
pub fn default_prevented(&self) -> bool {
self.window.default_prevented
}
/// Determine whether the given action is available along the dispatch path to the currently focused element.
pub fn is_action_available(&self, action: &dyn Action) -> bool {
let target = self
.focused()
.and_then(|focused_handle| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focused_handle.id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
self.window
.rendered_frame
.dispatch_tree
.is_action_available(action, target)
}
/// The position of the mouse relative to the window.
pub fn mouse_position(&self) -> Point<Pixels> {
self.window.mouse_position
}
/// The current state of the keyboard's modifiers
pub fn modifiers(&self) -> Modifiers {
self.window.modifiers
}
/// Returns true if there is no opaque layer containing the given point
/// on top of the given level. Layers who are extensions of the queried layer
/// are not considered to be on top of queried layer.
pub fn was_top_layer(&self, point: &Point<Pixels>, layer: &StackingOrder) -> bool {
// Precondition: the depth map is ordered from topmost to bottomost.
for (opaque_layer, _, bounds) in self.window.rendered_frame.depth_map.iter() {
if layer >= opaque_layer {
// The queried layer is either above or is the same as the this opaque layer.
// Anything after this point is guaranteed to be below the queried layer.
return true;
}
if !bounds.contains(point) {
// This opaque layer is above the queried layer but it doesn't contain
// the given position, so we can ignore it even if it's above.
continue;
}
// At this point, we've established that this opaque layer is on top of the queried layer
// and contains the position:
// If neither the opaque layer or the queried layer is an extension of the other then
// we know they are on different stacking orders, and return false.
let is_on_same_layer = opaque_layer
.iter()
.zip(layer.iter())
.all(|(a, b)| a.z_index == b.z_index);
if !is_on_same_layer {
return false;
}
}
true
}
pub(crate) fn was_top_layer_under_active_drag(
&self,
point: &Point<Pixels>,
layer: &StackingOrder,
) -> bool {
// Precondition: the depth map is ordered from topmost to bottomost.
for (opaque_layer, _, bounds) in self.window.rendered_frame.depth_map.iter() {
if layer >= opaque_layer {
// The queried layer is either above or is the same as the this opaque layer.
// Anything after this point is guaranteed to be below the queried layer.
return true;
}
if !bounds.contains(point) {
// This opaque layer is above the queried layer but it doesn't contain
// the given position, so we can ignore it even if it's above.
continue;
}
// All normal content is rendered with a base z-index of 0, we know that if the root of this opaque layer
// equals `ACTIVE_DRAG_Z_INDEX` then it must be the drag layer and we can ignore it as we are
// looking to see if the queried layer was the topmost underneath the drag layer.
if opaque_layer
.first()
.map(|c| c.z_index == ACTIVE_DRAG_Z_INDEX)
.unwrap_or(false)
{
continue;
}
// At this point, we've established that this opaque layer is on top of the queried layer
// and contains the position:
// If neither the opaque layer or the queried layer is an extension of the other then
// we know they are on different stacking orders, and return false.
let is_on_same_layer = opaque_layer
.iter()
.zip(layer.iter())
.all(|(a, b)| a.z_index == b.z_index);
if !is_on_same_layer {
return false;
}
}
true
}
/// Called during painting to get the current stacking order.
pub fn stacking_order(&self) -> &StackingOrder {
&self.window.next_frame.z_index_stack
}
/// Produces a new frame and assigns it to `rendered_frame`. To actually show
/// the contents of the new [Scene], use [present].
#[profiling::function]
pub fn draw(&mut self) {
self.window.dirty.set(false);
self.window.drawing = true;
if let Some(requested_handler) = self.window.rendered_frame.requested_input_handler.as_mut()
{
let input_handler = self.window.platform_window.take_input_handler();
requested_handler.handler = input_handler;
}
let root_view = self.window.root_view.take().unwrap();
self.with_element_context(|cx| {
cx.with_z_index(0, |cx| {
cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| {
// We need to use cx.cx here so we can utilize borrow splitting
for (action_type, action_listeners) in &cx.cx.app.global_action_listeners {
for action_listener in action_listeners.iter().cloned() {
cx.cx.window.next_frame.dispatch_tree.on_action(
*action_type,
Rc::new(
move |action: &dyn Any, phase, cx: &mut WindowContext<'_>| {
action_listener(action, phase, cx)
},
),
)
}
}
let available_space = cx.window.viewport_size.map(Into::into);
root_view.draw(Point::default(), available_space, cx);
})
})
});
if let Some(active_drag) = self.app.active_drag.take() {
self.with_element_context(|cx| {
cx.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| {
let offset = cx.mouse_position() - active_drag.cursor_offset;
let available_space =
size(AvailableSpace::MinContent, AvailableSpace::MinContent);
active_drag.view.draw(offset, available_space, cx);
})
});
self.active_drag = Some(active_drag);
} else if let Some(tooltip_request) = self.window.next_frame.tooltip_request.take() {
self.with_element_context(|cx| {
cx.with_z_index(1, |cx| {
let available_space =
size(AvailableSpace::MinContent, AvailableSpace::MinContent);
tooltip_request.tooltip.view.draw(
tooltip_request.tooltip.cursor_offset,
available_space,
cx,
);
})
});
self.window.next_frame.tooltip_request = Some(tooltip_request);
}
self.window.dirty_views.clear();
self.window
.next_frame
.dispatch_tree
.preserve_pending_keystrokes(
&mut self.window.rendered_frame.dispatch_tree,
self.window.focus,
);
self.window.next_frame.focus = self.window.focus;
self.window.next_frame.window_active = self.window.active.get();
self.window.root_view = Some(root_view);
// Set the cursor only if we're the active window.
let cursor_style_request = self.window.next_frame.requested_cursor_style.take();
if self.is_window_active() {
let cursor_style =
cursor_style_request.map_or(CursorStyle::Arrow, |request| request.style);
self.platform.set_cursor_style(cursor_style);
}
// Register requested input handler with the platform window.
if let Some(requested_input) = self.window.next_frame.requested_input_handler.as_mut() {
if let Some(handler) = requested_input.handler.take() {
self.window.platform_window.set_input_handler(handler);
}
}
self.window.layout_engine.as_mut().unwrap().clear();
self.text_system()
.finish_frame(&self.window.next_frame.reused_views);
self.window
.next_frame
.finish(&mut self.window.rendered_frame);
ELEMENT_ARENA.with_borrow_mut(|element_arena| {
let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
if percentage >= 80. {
log::warn!("elevated element arena occupation: {}.", percentage);
}
element_arena.clear();
});
let previous_focus_path = self.window.rendered_frame.focus_path();
let previous_window_active = self.window.rendered_frame.window_active;
mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame);
self.window.next_frame.clear();
let current_focus_path = self.window.rendered_frame.focus_path();
let current_window_active = self.window.rendered_frame.window_active;
if previous_focus_path != current_focus_path
|| previous_window_active != current_window_active
{
if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
self.window
.focus_lost_listeners
.clone()
.retain(&(), |listener| listener(self));
}
let event = FocusEvent {
previous_focus_path: if previous_window_active {
previous_focus_path
} else {
Default::default()
},
current_focus_path: if current_window_active {
current_focus_path
} else {
Default::default()
},
};
self.window
.focus_listeners
.clone()
.retain(&(), |listener| listener(&event, self));
}
self.window.refreshing = false;
self.window.drawing = false;
self.window.needs_present.set(true);
}
#[profiling::function]
fn present(&self) {
self.window
.platform_window
.draw(&self.window.rendered_frame.scene);
self.window.needs_present.set(false);
profiling::finish_frame!();
}
/// Dispatch a given keystroke as though the user had typed it.
/// You can create a keystroke with Keystroke::parse("").
pub fn dispatch_keystroke(&mut self, keystroke: Keystroke) -> bool {
let keystroke = keystroke.with_simulated_ime();
if self.dispatch_event(PlatformInput::KeyDown(KeyDownEvent {
keystroke: keystroke.clone(),
is_held: false,
})) {
return true;
}
if let Some(input) = keystroke.ime_key {
if let Some(mut input_handler) = self.window.platform_window.take_input_handler() {
input_handler.dispatch_input(&input, self);
self.window.platform_window.set_input_handler(input_handler);
return true;
}
}
false
}
/// Represent this action as a key binding string, to display in the UI.
pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
self.bindings_for_action(action)
.into_iter()
.next()
.map(|binding| {
binding
.keystrokes()
.iter()
.map(ToString::to_string)
.collect::<Vec<_>>()
.join(" ")
})
.unwrap_or_else(|| action.name().to_string())
}
/// Dispatch a mouse or keyboard event on the window.
#[profiling::function]
pub fn dispatch_event(&mut self, event: PlatformInput) -> bool {
self.window.last_input_timestamp.set(Instant::now());
// Handlers may set this to false by calling `stop_propagation`.
self.app.propagate_event = true;
// Handlers may set this to true by calling `prevent_default`.
self.window.default_prevented = false;
let event = match event {
// Track the mouse position with our own state, since accessing the platform
// API for the mouse position can only occur on the main thread.
PlatformInput::MouseMove(mouse_move) => {
self.window.mouse_position = mouse_move.position;
self.window.modifiers = mouse_move.modifiers;
PlatformInput::MouseMove(mouse_move)
}
PlatformInput::MouseDown(mouse_down) => {
self.window.mouse_position = mouse_down.position;
self.window.modifiers = mouse_down.modifiers;
PlatformInput::MouseDown(mouse_down)
}
PlatformInput::MouseUp(mouse_up) => {
self.window.mouse_position = mouse_up.position;
self.window.modifiers = mouse_up.modifiers;
PlatformInput::MouseUp(mouse_up)
}
PlatformInput::MouseExited(mouse_exited) => {
self.window.modifiers = mouse_exited.modifiers;
PlatformInput::MouseExited(mouse_exited)
}
PlatformInput::ModifiersChanged(modifiers_changed) => {
self.window.modifiers = modifiers_changed.modifiers;
PlatformInput::ModifiersChanged(modifiers_changed)
}
PlatformInput::ScrollWheel(scroll_wheel) => {
self.window.mouse_position = scroll_wheel.position;
self.window.modifiers = scroll_wheel.modifiers;
PlatformInput::ScrollWheel(scroll_wheel)
}
// Translate dragging and dropping of external files from the operating system
// to internal drag and drop events.
PlatformInput::FileDrop(file_drop) => match file_drop {
FileDropEvent::Entered { position, paths } => {
self.window.mouse_position = position;
if self.active_drag.is_none() {
self.active_drag = Some(AnyDrag {
value: Box::new(paths.clone()),
view: self.new_view(|_| paths).into(),
cursor_offset: position,
});
}
PlatformInput::MouseMove(MouseMoveEvent {
position,
pressed_button: Some(MouseButton::Left),
modifiers: Modifiers::default(),
})
}
FileDropEvent::Pending { position } => {
self.window.mouse_position = position;
PlatformInput::MouseMove(MouseMoveEvent {
position,
pressed_button: Some(MouseButton::Left),
modifiers: Modifiers::default(),
})
}
FileDropEvent::Submit { position } => {
self.activate(true);
self.window.mouse_position = position;
PlatformInput::MouseUp(MouseUpEvent {
button: MouseButton::Left,
position,
modifiers: Modifiers::default(),
click_count: 1,
})
}
FileDropEvent::Exited => PlatformInput::MouseUp(MouseUpEvent {
button: MouseButton::Left,
position: Point::default(),
modifiers: Modifiers::default(),
click_count: 1,
}),
},
PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
};
if let Some(any_mouse_event) = event.mouse_event() {
self.dispatch_mouse_event(any_mouse_event);
} else if let Some(any_key_event) = event.keyboard_event() {
self.dispatch_key_event(any_key_event);
}
!self.app.propagate_event
}
fn dispatch_mouse_event(&mut self, event: &dyn Any) {
if let Some(mut handlers) = self
.window
.rendered_frame
.mouse_listeners
.remove(&event.type_id())
{
// Because handlers may add other handlers, we sort every time.
handlers.sort_by(|(a, _, _), (b, _, _)| a.cmp(b));
// Capture phase, events bubble from back to front. Handlers for this phase are used for
// special purposes, such as detecting events outside of a given Bounds.
for (_, _, handler) in &mut handlers {
self.with_element_context(|cx| {
handler(event, DispatchPhase::Capture, cx);
});
if !self.app.propagate_event {
break;
}
}
// Bubble phase, where most normal handlers do their work.
if self.app.propagate_event {
for (_, _, handler) in handlers.iter_mut().rev() {
self.with_element_context(|cx| {
handler(event, DispatchPhase::Bubble, cx);
});
if !self.app.propagate_event {
break;
}
}
}
self.window
.rendered_frame
.mouse_listeners
.insert(event.type_id(), handlers);
}
if self.app.propagate_event && self.has_active_drag() {
if event.is::<MouseMoveEvent>() {
// If this was a mouse move event, redraw the window so that the
// active drag can follow the mouse cursor.
self.refresh();
} else if event.is::<MouseUpEvent>() {
// If this was a mouse up event, cancel the active drag and redraw
// the window.
self.active_drag = None;
self.refresh();
}
}
}
fn dispatch_key_event(&mut self, event: &dyn Any) {
if self.window.dirty.get() {
self.draw();
}
let node_id = self
.window
.focus
.and_then(|focus_id| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focus_id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
let dispatch_path = self
.window
.rendered_frame
.dispatch_tree
.dispatch_path(node_id);
if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
let KeymatchResult { bindings, pending } = self
.window
.rendered_frame
.dispatch_tree
.dispatch_key(&key_down_event.keystroke, &dispatch_path);
if pending {
let mut currently_pending = self.window.pending_input.take().unwrap_or_default();
if currently_pending.focus.is_some() && currently_pending.focus != self.window.focus
{
currently_pending = PendingInput::default();
}
currently_pending.focus = self.window.focus;
currently_pending
.keystrokes
.push(key_down_event.keystroke.clone());
for binding in bindings {
currently_pending.bindings.push(binding);
}
currently_pending.timer = Some(self.spawn(|mut cx| async move {
cx.background_executor.timer(Duration::from_secs(1)).await;
cx.update(move |cx| {
cx.clear_pending_keystrokes();
let Some(currently_pending) = cx.window.pending_input.take() else {
return;
};
cx.replay_pending_input(currently_pending)
})
.log_err();
}));
self.window.pending_input = Some(currently_pending);
self.propagate_event = false;
return;
} else if let Some(currently_pending) = self.window.pending_input.take() {
if bindings
.iter()
.all(|binding| !currently_pending.used_by_binding(binding))
{
self.replay_pending_input(currently_pending)
}
}
if !bindings.is_empty() {
self.clear_pending_keystrokes();
}
self.propagate_event = true;
for binding in bindings {
self.dispatch_action_on_node(node_id, binding.action.boxed_clone());
if !self.propagate_event {
self.dispatch_keystroke_observers(event, Some(binding.action));
return;
}
}
}
self.dispatch_key_down_up_event(event, &dispatch_path);
if !self.propagate_event {
return;
}
self.dispatch_keystroke_observers(event, None);
}
fn dispatch_key_down_up_event(
&mut self,
event: &dyn Any,
dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
) {
// Capture phase
for node_id in dispatch_path {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for key_listener in node.key_listeners.clone() {
self.with_element_context(|cx| {
key_listener(event, DispatchPhase::Capture, cx);
});
if !self.propagate_event {
return;
}
}
}
// Bubble phase
for node_id in dispatch_path.iter().rev() {
// Handle low level key events
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for key_listener in node.key_listeners.clone() {
self.with_element_context(|cx| {
key_listener(event, DispatchPhase::Bubble, cx);
});
if !self.propagate_event {
return;
}
}
}
}
/// Determine whether a potential multi-stroke key binding is in progress on this window.
pub fn has_pending_keystrokes(&self) -> bool {
self.window
.rendered_frame
.dispatch_tree
.has_pending_keystrokes()
}
fn replay_pending_input(&mut self, currently_pending: PendingInput) {
let node_id = self
.window
.focus
.and_then(|focus_id| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focus_id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
if self.window.focus != currently_pending.focus {
return;
}
let input = currently_pending.input();
self.propagate_event = true;
for binding in currently_pending.bindings {
self.dispatch_action_on_node(node_id, binding.action.boxed_clone());
if !self.propagate_event {
return;
}
}
let dispatch_path = self
.window
.rendered_frame
.dispatch_tree
.dispatch_path(node_id);
for keystroke in currently_pending.keystrokes {
let event = KeyDownEvent {
keystroke,
is_held: false,
};
self.dispatch_key_down_up_event(&event, &dispatch_path);
if !self.propagate_event {
return;
}
}
if !input.is_empty() {
if let Some(mut input_handler) = self.window.platform_window.take_input_handler() {
input_handler.dispatch_input(&input, self);
self.window.platform_window.set_input_handler(input_handler)
}
}
}
fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box<dyn Action>) {
let dispatch_path = self
.window
.rendered_frame
.dispatch_tree
.dispatch_path(node_id);
// Capture phase
for node_id in &dispatch_path {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for DispatchActionListener {
action_type,
listener,
} in node.action_listeners.clone()
{
let any_action = action.as_any();
if action_type == any_action.type_id() {
self.with_element_context(|cx| {
listener(any_action, DispatchPhase::Capture, cx);
});
if !self.propagate_event {
return;
}
}
}
}
// Bubble phase
for node_id in dispatch_path.iter().rev() {
let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
for DispatchActionListener {
action_type,
listener,
} in node.action_listeners.clone()
{
let any_action = action.as_any();
if action_type == any_action.type_id() {
self.propagate_event = false; // Actions stop propagation by default during the bubble phase
self.with_element_context(|cx| {
listener(any_action, DispatchPhase::Bubble, cx);
});
if !self.propagate_event {
return;
}
}
}
}
}
/// Register the given handler to be invoked whenever the global of the given type
/// is updated.
pub fn observe_global<G: Global>(
&mut self,
f: impl Fn(&mut WindowContext<'_>) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let (subscription, activate) = self.global_observers.insert(
TypeId::of::<G>(),
Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
);
self.app.defer(move |_| activate());
subscription
}
/// Focus the current window and bring it to the foreground at the platform level.
pub fn activate_window(&self) {
self.window.platform_window.activate();
}
/// Minimize the current window at the platform level.
pub fn minimize_window(&self) {
self.window.platform_window.minimize();
}
/// Toggle full screen status on the current window at the platform level.
pub fn toggle_full_screen(&self) {
self.window.platform_window.toggle_full_screen();
}
/// Present a platform dialog.
/// The provided message will be presented, along with buttons for each answer.
/// When a button is clicked, the returned Receiver will receive the index of the clicked button.
pub fn prompt(
&self,
level: PromptLevel,
message: &str,
detail: Option<&str>,
answers: &[&str],
) -> oneshot::Receiver<usize> {
self.window
.platform_window
.prompt(level, message, detail, answers)
}
/// Returns all available actions for the focused element.
pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
let node_id = self
.window
.focus
.and_then(|focus_id| {
self.window
.rendered_frame
.dispatch_tree
.focusable_node_id(focus_id)
})
.unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
self.window
.rendered_frame
.dispatch_tree
.available_actions(node_id)
}
/// Returns key bindings that invoke the given action on the currently focused element.
pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
self.window
.rendered_frame
.dispatch_tree
.bindings_for_action(
action,
&self.window.rendered_frame.dispatch_tree.context_stack,
)
}
/// Returns any bindings that would invoke the given action on the given focus handle if it were focused.
pub fn bindings_for_action_in(
&self,
action: &dyn Action,
focus_handle: &FocusHandle,
) -> Vec<KeyBinding> {
let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
return vec![];
};
let context_stack: Vec<_> = dispatch_tree
.dispatch_path(node_id)
.into_iter()
.filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
.collect();
dispatch_tree.bindings_for_action(action, &context_stack)
}
/// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
pub fn listener_for<V: Render, E>(
&self,
view: &View<V>,
f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
) -> impl Fn(&E, &mut WindowContext) + 'static {
let view = view.downgrade();
move |e: &E, cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, e, cx)).ok();
}
}
/// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
pub fn handler_for<V: Render>(
&self,
view: &View<V>,
f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
) -> impl Fn(&mut WindowContext) {
let view = view.downgrade();
move |cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, cx)).ok();
}
}
/// Register a callback that can interrupt the closing of the current window based the returned boolean.
/// If the callback returns false, the window won't be closed.
pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
let mut this = self.to_async();
self.window
.platform_window
.on_should_close(Box::new(move || this.update(|cx| f(cx)).unwrap_or(true)))
}
pub(crate) fn parent_view_id(&self) -> EntityId {
*self
.window
.next_frame
.view_stack
.last()
.expect("a view should always be on the stack while drawing")
}
/// Register an action listener on the window for the next frame. The type of action
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
///
/// This is a fairly low-level method, so prefer using action handlers on elements unless you have
/// a specific need to register a global listener.
pub fn on_action(
&mut self,
action_type: TypeId,
listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
) {
self.window
.next_frame
.dispatch_tree
.on_action(action_type, Rc::new(listener));
}
}
impl Context for WindowContext<'_> {
type Result<T> = T;
fn new_model<T>(&mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T) -> Model<T>
where
T: 'static,
{
let slot = self.app.entities.reserve();
let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
self.entities.insert(slot, model)
}
fn update_model<T: 'static, R>(
&mut self,
model: &Model<T>,
update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
) -> R {
let mut entity = self.entities.lease(model);
let result = update(
&mut *entity,
&mut ModelContext::new(&mut *self.app, model.downgrade()),
);
self.entities.end_lease(entity);
result
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
where
F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
{
if window == self.window.handle {
let root_view = self.window.root_view.clone().unwrap();
Ok(update(root_view, self))
} else {
window.update(self.app, update)
}
}
fn read_model<T, R>(
&self,
handle: &Model<T>,
read: impl FnOnce(&T, &AppContext) -> R,
) -> Self::Result<R>
where
T: 'static,
{
let entity = self.entities.read(handle);
read(entity, &*self.app)
}
fn read_window<T, R>(
&self,
window: &WindowHandle<T>,
read: impl FnOnce(View<T>, &AppContext) -> R,
) -> Result<R>
where
T: 'static,
{
if window.any_handle == self.window.handle {
let root_view = self
.window
.root_view
.clone()
.unwrap()
.downcast::<T>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(read(root_view, self))
} else {
self.app.read_window(window, read)
}
}
}
impl VisualContext for WindowContext<'_> {
fn new_view<V>(
&mut self,
build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
) -> Self::Result<View<V>>
where
V: 'static + Render,
{
let slot = self.app.entities.reserve();
let view = View {
model: slot.clone(),
};
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
let entity = build_view_state(&mut cx);
cx.entities.insert(slot, entity);
// Non-generic part to avoid leaking SubscriberSet to invokers of `new_view`.
fn notify_observers(cx: &mut WindowContext, tid: TypeId, view: AnyView) {
cx.new_view_observers.clone().retain(&tid, |observer| {
let any_view = view.clone();
(observer)(any_view, cx);
true
});
}
notify_observers(self, TypeId::of::<V>(), AnyView::from(view.clone()));
view
}
/// Updates the given view. Prefer calling [`View::update`] instead, which calls this method.
fn update_view<T: 'static, R>(
&mut self,
view: &View<T>,
update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
) -> Self::Result<R> {
let mut lease = self.app.entities.lease(&view.model);
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, view);
let result = update(&mut *lease, &mut cx);
cx.app.entities.end_lease(lease);
result
}
fn replace_root_view<V>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
) -> Self::Result<View<V>>
where
V: 'static + Render,
{
let view = self.new_view(build_view);
self.window.root_view = Some(view.clone().into());
self.refresh();
view
}
fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
self.update_view(view, |view, cx| {
view.focus_handle(cx).clone().focus(cx);
})
}
fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
where
V: ManagedView,
{
self.update_view(view, |_, cx| cx.emit(DismissEvent))
}
}
impl<'a> std::ops::Deref for WindowContext<'a> {
type Target = AppContext;
fn deref(&self) -> &Self::Target {
self.app
}
}
impl<'a> std::ops::DerefMut for WindowContext<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.app
}
}
impl<'a> Borrow<AppContext> for WindowContext<'a> {
fn borrow(&self) -> &AppContext {
self.app
}
}
impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
fn borrow_mut(&mut self) -> &mut AppContext {
self.app
}
}
/// This trait contains functionality that is shared across [`ViewContext`] and [`WindowContext`]
pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
#[doc(hidden)]
fn app_mut(&mut self) -> &mut AppContext {
self.borrow_mut()
}
#[doc(hidden)]
fn app(&self) -> &AppContext {
self.borrow()
}
#[doc(hidden)]
fn window(&self) -> &Window {
self.borrow()
}
#[doc(hidden)]
fn window_mut(&mut self) -> &mut Window {
self.borrow_mut()
}
}
impl Borrow<Window> for WindowContext<'_> {
fn borrow(&self) -> &Window {
self.window
}
}
impl BorrowMut<Window> for WindowContext<'_> {
fn borrow_mut(&mut self) -> &mut Window {
self.window
}
}
impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
/// Provides access to application state that is specialized for a particular [`View`].
/// Allows you to interact with focus, emit events, etc.
/// ViewContext also derefs to [`WindowContext`], giving you access to all of its methods as well.
/// When you call [`View::update`], you're passed a `&mut V` and an `&mut ViewContext<V>`.
pub struct ViewContext<'a, V> {
window_cx: WindowContext<'a>,
view: &'a View<V>,
}
impl<V> Borrow<AppContext> for ViewContext<'_, V> {
fn borrow(&self) -> &AppContext {
&*self.window_cx.app
}
}
impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
fn borrow_mut(&mut self) -> &mut AppContext {
&mut *self.window_cx.app
}
}
impl<V> Borrow<Window> for ViewContext<'_, V> {
fn borrow(&self) -> &Window {
&*self.window_cx.window
}
}
impl<V> BorrowMut<Window> for ViewContext<'_, V> {
fn borrow_mut(&mut self) -> &mut Window {
&mut *self.window_cx.window
}
}
impl<'a, V: 'static> ViewContext<'a, V> {
pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
Self {
window_cx: WindowContext::new(app, window),
view,
}
}
/// Get the entity_id of this view.
pub fn entity_id(&self) -> EntityId {
self.view.entity_id()
}
/// Get the view pointer underlying this context.
pub fn view(&self) -> &View<V> {
self.view
}
/// Get the model underlying this view.
pub fn model(&self) -> &Model<V> {
&self.view.model
}
/// Access the underlying window context.
pub fn window_context(&mut self) -> &mut WindowContext<'a> {
&mut self.window_cx
}
/// Sets a given callback to be run on the next frame.
pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
where
V: 'static,
{
let view = self.view().clone();
self.window_cx.on_next_frame(move |cx| view.update(cx, f));
}
/// Schedules the given function to be run at the end of the current effect cycle, allowing entities
/// that are currently on the stack to be returned to the app.
pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
let view = self.view().downgrade();
self.window_cx.defer(move |cx| {
view.update(cx, f).ok();
});
}
/// Observe another model or view for changes to its state, as tracked by [`ModelContext::notify`].
pub fn observe<V2, E>(
&mut self,
entity: &E,
mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V2: 'static,
V: 'static,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let entity = entity.downgrade();
let window_handle = self.window.handle;
self.app.new_observer(
entity_id,
Box::new(move |cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&entity) {
view.update(cx, |this, cx| on_notify(this, handle, cx))
.is_ok()
} else {
false
}
})
.unwrap_or(false)
}),
)
}
/// Subscribe to events emitted by another model or view.
/// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
/// The callback will be invoked with a reference to the current view, a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a view context for the current view.
pub fn subscribe<V2, E, Evt>(
&mut self,
entity: &E,
mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V2: EventEmitter<Evt>,
E: Entity<V2>,
Evt: 'static,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let handle = entity.downgrade();
let window_handle = self.window.handle;
self.app.new_subscription(
entity_id,
(
TypeId::of::<Evt>(),
Box::new(move |event, cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&handle) {
let event = event.downcast_ref().expect("invalid event type");
view.update(cx, |this, cx| on_event(this, handle, event, cx))
.is_ok()
} else {
false
}
})
.unwrap_or(false)
}),
),
)
}
/// Register a callback to be invoked when the view is released.
///
/// The callback receives a handle to the view's window. This handle may be
/// invalid, if the window was closed before the view was released.
pub fn on_release(
&mut self,
on_release: impl FnOnce(&mut V, AnyWindowHandle, &mut AppContext) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let (subscription, activate) = self.app.release_listeners.insert(
self.view.model.entity_id,
Box::new(move |this, cx| {
let this = this.downcast_mut().expect("invalid entity type");
on_release(this, window_handle, cx)
}),
);
activate();
subscription
}
/// Register a callback to be invoked when the given Model or View is released.
pub fn observe_release<V2, E>(
&mut self,
entity: &E,
mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V: 'static,
V2: 'static,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let window_handle = self.window.handle;
let (subscription, activate) = self.app.release_listeners.insert(
entity_id,
Box::new(move |entity, cx| {
let entity = entity.downcast_mut().expect("invalid entity type");
let _ = window_handle.update(cx, |_, cx| {
view.update(cx, |this, cx| on_release(this, entity, cx))
});
}),
);
activate();
subscription
}
/// Indicate that this view has changed, which will invoke any observers and also mark the window as dirty.
/// If this view or any of its ancestors are *cached*, notifying it will cause it or its ancestors to be redrawn.
pub fn notify(&mut self) {
for view_id in self
.window
.rendered_frame
.dispatch_tree
.view_path(self.view.entity_id())
.into_iter()
.rev()
{
if !self.window.dirty_views.insert(view_id) {
break;
}
}
if !self.window.drawing {
self.window_cx.window.dirty.set(true);
self.window_cx.app.push_effect(Effect::Notify {
emitter: self.view.model.entity_id,
});
}
}
/// Register a callback to be invoked when the window is resized.
pub fn observe_window_bounds(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.bounds_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
);
activate();
subscription
}
/// Register a callback to be invoked when the window is activated or deactivated.
pub fn observe_window_activation(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.activation_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
);
activate();
subscription
}
/// Registers a callback to be invoked when the window appearance changes.
pub fn observe_window_appearance(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.appearance_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
);
activate();
subscription
}
/// Register a listener to be called when the given focus handle receives focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_focus(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) =
self.window.new_focus_listener(Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.last() != Some(&focus_id)
&& event.current_focus_path.last() == Some(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}));
self.app.defer(|_| activate());
subscription
}
/// Register a listener to be called when the given focus handle or one of its descendants receives focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_focus_in(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) =
self.window.new_focus_listener(Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if !event.previous_focus_path.contains(&focus_id)
&& event.current_focus_path.contains(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}));
self.app.defer(move |_| activate());
subscription
}
/// Register a listener to be called when the given focus handle loses focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_blur(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) =
self.window.new_focus_listener(Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.last() == Some(&focus_id)
&& event.current_focus_path.last() != Some(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}));
self.app.defer(move |_| activate());
subscription
}
/// Register a listener to be called when nothing in the window has focus.
/// This typically happens when the node that was focused is removed from the tree,
/// and this callback lets you chose a default place to restore the users focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_focus_lost(
&mut self,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let (subscription, activate) = self.window.focus_lost_listeners.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()),
);
activate();
subscription
}
/// Register a listener to be called when the given focus handle or one of its descendants loses focus.
/// Returns a subscription and persists until the subscription is dropped.
pub fn on_focus_out(
&mut self,
handle: &FocusHandle,
mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
let focus_id = handle.id;
let (subscription, activate) =
self.window.new_focus_listener(Box::new(move |event, cx| {
view.update(cx, |view, cx| {
if event.previous_focus_path.contains(&focus_id)
&& !event.current_focus_path.contains(&focus_id)
{
listener(view, cx)
}
})
.is_ok()
}));
self.app.defer(move |_| activate());
subscription
}
/// Schedule a future to be run asynchronously.
/// The given callback is invoked with a [`WeakView<V>`] to avoid leaking the view for a long-running process.
/// It's also given an [`AsyncWindowContext`], which can be used to access the state of the view across await points.
/// The returned future will be polled on the main thread.
pub fn spawn<Fut, R>(
&mut self,
f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
) -> Task<R>
where
R: 'static,
Fut: Future<Output = R> + 'static,
{
let view = self.view().downgrade();
self.window_cx.spawn(|cx| f(view, cx))
}
/// Updates the global state of the given type.
pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
where
G: Global,
{
let mut global = self.app.lease_global::<G>();
let result = f(&mut global, self);
self.app.end_global_lease(global);
result
}
/// Register a callback to be invoked when the given global state changes.
pub fn observe_global<G: Global>(
&mut self,
mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let view = self.view().downgrade();
let (subscription, activate) = self.global_observers.insert(
TypeId::of::<G>(),
Box::new(move |cx| {
window_handle
.update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
.unwrap_or(false)
}),
);
self.app.defer(move |_| activate());
subscription
}
/// Register a callback to be invoked when the given Action type is dispatched to the window.
pub fn on_action(
&mut self,
action_type: TypeId,
listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
) {
let handle = self.view().clone();
self.window_cx
.on_action(action_type, move |action, phase, cx| {
handle.update(cx, |view, cx| {
listener(view, action, phase, cx);
})
});
}
/// Emit an event to be handled any other views that have subscribed via [ViewContext::subscribe].
pub fn emit<Evt>(&mut self, event: Evt)
where
Evt: 'static,
V: EventEmitter<Evt>,
{
let emitter = self.view.model.entity_id;
self.app.push_effect(Effect::Emit {
emitter,
event_type: TypeId::of::<Evt>(),
event: Box::new(event),
});
}
/// Move focus to the current view, assuming it implements [`FocusableView`].
pub fn focus_self(&mut self)
where
V: FocusableView,
{
self.defer(|view, cx| view.focus_handle(cx).focus(cx))
}
/// Convenience method for accessing view state in an event callback.
///
/// Many GPUI callbacks take the form of `Fn(&E, &mut WindowContext)`,
/// but it's often useful to be able to access view state in these
/// callbacks. This method provides a convenient way to do so.
pub fn listener<E>(
&self,
f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
) -> impl Fn(&E, &mut WindowContext) + 'static {
let view = self.view().downgrade();
move |e: &E, cx: &mut WindowContext| {
view.update(cx, |view, cx| f(view, e, cx)).ok();
}
}
}
impl<V> Context for ViewContext<'_, V> {
type Result<U> = U;
fn new_model<T: 'static>(
&mut self,
build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
) -> Model<T> {
self.window_cx.new_model(build_model)
}
fn update_model<T: 'static, R>(
&mut self,
model: &Model<T>,
update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
) -> R {
self.window_cx.update_model(model, update)
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
where
F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
{
self.window_cx.update_window(window, update)
}
fn read_model<T, R>(
&self,
handle: &Model<T>,
read: impl FnOnce(&T, &AppContext) -> R,
) -> Self::Result<R>
where
T: 'static,
{
self.window_cx.read_model(handle, read)
}
fn read_window<T, R>(
&self,
window: &WindowHandle<T>,
read: impl FnOnce(View<T>, &AppContext) -> R,
) -> Result<R>
where
T: 'static,
{
self.window_cx.read_window(window, read)
}
}
impl<V: 'static> VisualContext for ViewContext<'_, V> {
fn new_view<W: Render + 'static>(
&mut self,
build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
) -> Self::Result<View<W>> {
self.window_cx.new_view(build_view_state)
}
fn update_view<V2: 'static, R>(
&mut self,
view: &View<V2>,
update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
) -> Self::Result<R> {
self.window_cx.update_view(view, update)
}
fn replace_root_view<W>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
) -> Self::Result<View<W>>
where
W: 'static + Render,
{
self.window_cx.replace_root_view(build_view)
}
fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
self.window_cx.focus_view(view)
}
fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
self.window_cx.dismiss_view(view)
}
}
impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
type Target = WindowContext<'a>;
fn deref(&self) -> &Self::Target {
&self.window_cx
}
}
impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.window_cx
}
}
// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
slotmap::new_key_type! {
/// A unique identifier for a window.
pub struct WindowId;
}
impl WindowId {
/// Converts this window ID to a `u64`.
pub fn as_u64(&self) -> u64 {
self.0.as_ffi()
}
}
/// A handle to a window with a specific root view type.
/// Note that this does not keep the window alive on its own.
#[derive(Deref, DerefMut)]
pub struct WindowHandle<V> {
#[deref]
#[deref_mut]
pub(crate) any_handle: AnyWindowHandle,
state_type: PhantomData<V>,
}
impl<V: 'static + Render> WindowHandle<V> {
/// Creates a new handle from a window ID.
/// This does not check if the root type of the window is `V`.
pub fn new(id: WindowId) -> Self {
WindowHandle {
any_handle: AnyWindowHandle {
id,
state_type: TypeId::of::<V>(),
},
state_type: PhantomData,
}
}
/// Get the root view out of this window.
///
/// This will fail if the window is closed or if the root view's type does not match `V`.
pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
where
C: Context,
{
Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
root_view
.downcast::<V>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))
}))
}
/// Updates the root view of this window.
///
/// This will fail if the window has been closed or if the root view's type does not match
pub fn update<C, R>(
&self,
cx: &mut C,
update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
) -> Result<R>
where
C: Context,
{
cx.update_window(self.any_handle, |root_view, cx| {
let view = root_view
.downcast::<V>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(cx.update_view(&view, update))
})?
}
/// Read the root view out of this window.
///
/// This will fail if the window is closed or if the root view's type does not match `V`.
pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
let x = cx
.windows
.get(self.id)
.and_then(|window| {
window
.as_ref()
.and_then(|window| window.root_view.clone())
.map(|root_view| root_view.downcast::<V>())
})
.ok_or_else(|| anyhow!("window not found"))?
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(x.read(cx))
}
/// Read the root view out of this window, with a callback
///
/// This will fail if the window is closed or if the root view's type does not match `V`.
pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
where
C: Context,
{
cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
}
/// Read the root view pointer off of this window.
///
/// This will fail if the window is closed or if the root view's type does not match `V`.
pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
where
C: Context,
{
cx.read_window(self, |root_view, _cx| root_view.clone())
}
/// Check if this window is 'active'.
///
/// Will return `None` if the window is closed or currently
/// borrowed.
pub fn is_active(&self, cx: &mut AppContext) -> Option<bool> {
cx.update_window(self.any_handle, |_, cx| cx.is_window_active())
.ok()
}
}
impl<V> Copy for WindowHandle<V> {}
impl<V> Clone for WindowHandle<V> {
fn clone(&self) -> Self {
*self
}
}
impl<V> PartialEq for WindowHandle<V> {
fn eq(&self, other: &Self) -> bool {
self.any_handle == other.any_handle
}
}
impl<V> Eq for WindowHandle<V> {}
impl<V> Hash for WindowHandle<V> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.any_handle.hash(state);
}
}
impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
fn from(val: WindowHandle<V>) -> Self {
val.any_handle
}
}
/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct AnyWindowHandle {
pub(crate) id: WindowId,
state_type: TypeId,
}
impl AnyWindowHandle {
/// Get the ID of this window.
pub fn window_id(&self) -> WindowId {
self.id
}
/// Attempt to convert this handle to a window handle with a specific root view type.
/// If the types do not match, this will return `None`.
pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
if TypeId::of::<T>() == self.state_type {
Some(WindowHandle {
any_handle: *self,
state_type: PhantomData,
})
} else {
None
}
}
/// Updates the state of the root view of this window.
///
/// This will fail if the window has been closed.
pub fn update<C, R>(
self,
cx: &mut C,
update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
) -> Result<R>
where
C: Context,
{
cx.update_window(self, update)
}
/// Read the state of the root view of this window.
///
/// This will fail if the window has been closed.
pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
where
C: Context,
T: 'static,
{
let view = self
.downcast::<T>()
.context("the type of the window's root view has changed")?;
cx.read_window(&view, read)
}
}
/// An identifier for an [`Element`](crate::Element).
///
/// Can be constructed with a string, a number, or both, as well
/// as other internal representations.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum ElementId {
/// The ID of a View element
View(EntityId),
/// An integer ID.
Integer(usize),
/// A string based ID.
Name(SharedString),
/// An ID that's equated with a focus handle.
FocusHandle(FocusId),
/// A combination of a name and an integer.
NamedInteger(SharedString, usize),
}
impl Display for ElementId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
ElementId::Integer(ix) => write!(f, "{}", ix)?,
ElementId::Name(name) => write!(f, "{}", name)?,
ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
}
Ok(())
}
}
impl ElementId {
pub(crate) fn from_entity_id(entity_id: EntityId) -> Self {
ElementId::View(entity_id)
}
}
impl TryInto<SharedString> for ElementId {
type Error = anyhow::Error;
fn try_into(self) -> anyhow::Result<SharedString> {
if let ElementId::Name(name) = self {
Ok(name)
} else {
Err(anyhow!("element id is not string"))
}
}
}
impl From<usize> for ElementId {
fn from(id: usize) -> Self {
ElementId::Integer(id)
}
}
impl From<i32> for ElementId {
fn from(id: i32) -> Self {
Self::Integer(id as usize)
}
}
impl From<SharedString> for ElementId {
fn from(name: SharedString) -> Self {
ElementId::Name(name)
}
}
impl From<&'static str> for ElementId {
fn from(name: &'static str) -> Self {
ElementId::Name(name.into())
}
}
impl<'a> From<&'a FocusHandle> for ElementId {
fn from(handle: &'a FocusHandle) -> Self {
ElementId::FocusHandle(handle.id)
}
}
impl From<(&'static str, EntityId)> for ElementId {
fn from((name, id): (&'static str, EntityId)) -> Self {
ElementId::NamedInteger(name.into(), id.as_u64() as usize)
}
}
impl From<(&'static str, usize)> for ElementId {
fn from((name, id): (&'static str, usize)) -> Self {
ElementId::NamedInteger(name.into(), id)
}
}
impl From<(&'static str, u64)> for ElementId {
fn from((name, id): (&'static str, u64)) -> Self {
ElementId::NamedInteger(name.into(), id as usize)
}
}
/// A rectangle to be rendered in the window at the given position and size.
/// Passed as an argument [`ElementContext::paint_quad`].
#[derive(Clone)]
pub struct PaintQuad {
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
background: Hsla,
border_widths: Edges<Pixels>,
border_color: Hsla,
}
impl PaintQuad {
/// Sets the corner radii of the quad.
pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
PaintQuad {
corner_radii: corner_radii.into(),
..self
}
}
/// Sets the border widths of the quad.
pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
PaintQuad {
border_widths: border_widths.into(),
..self
}
}
/// Sets the border color of the quad.
pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
PaintQuad {
border_color: border_color.into(),
..self
}
}
/// Sets the background color of the quad.
pub fn background(self, background: impl Into<Hsla>) -> Self {
PaintQuad {
background: background.into(),
..self
}
}
}
/// Creates a quad with the given parameters.
pub fn quad(
bounds: Bounds<Pixels>,
corner_radii: impl Into<Corners<Pixels>>,
background: impl Into<Hsla>,
border_widths: impl Into<Edges<Pixels>>,
border_color: impl Into<Hsla>,
) -> PaintQuad {
PaintQuad {
bounds,
corner_radii: corner_radii.into(),
background: background.into(),
border_widths: border_widths.into(),
border_color: border_color.into(),
}
}
/// Creates a filled quad with the given bounds and background color.
pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Hsla>) -> PaintQuad {
PaintQuad {
bounds: bounds.into(),
corner_radii: (0.).into(),
background: background.into(),
border_widths: (0.).into(),
border_color: transparent_black(),
}
}
/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
PaintQuad {
bounds: bounds.into(),
corner_radii: (0.).into(),
background: transparent_black(),
border_widths: (1.).into(),
border_color: border_color.into(),
}
}