ok/jj
1
0
Fork 0
forked from mirrors/jj
jj/src/progress.rs

120 lines
3 KiB
Rust
Raw Normal View History

use std::time::Instant;
use jujutsu_lib::git;
use crate::ui::Ui;
pub struct Progress<'a> {
ui: &'a mut Ui,
rate: RateEstimate,
buffer: String,
printed: bool,
}
impl<'a> Progress<'a> {
pub fn new(ui: &'a mut Ui) -> Self {
Self {
ui,
rate: RateEstimate::new(),
buffer: String::new(),
printed: false,
}
}
pub fn update(&mut self, now: Instant, progress: &git::Progress) {
use std::fmt::Write as _;
const CLEAR_TRAILING: &str = "\x1b[K";
self.buffer.clear();
write!(
self.buffer,
"\r{}{: >3.0}%",
CLEAR_TRAILING,
100.0 * progress.overall
)
.unwrap();
if let Some(estimate) = progress
.bytes_downloaded
.and_then(|x| self.rate.update(now, x))
{
let (scaled, prefix) = binary_prefix(estimate);
write!(self.buffer, " at {: >5.1} {}B/s", scaled, prefix).unwrap();
}
_ = write!(self.ui, "{}", self.buffer);
self.printed = true;
}
}
impl Drop for Progress<'_> {
fn drop(&mut self) {
if self.printed {
let _ = writeln!(self.ui);
}
}
}
/// Find the smallest binary prefix with which the whole part of `x` is at most
/// three digits, and return the scaled `x` and that prefix.
fn binary_prefix(x: f32) -> (f32, &'static str) {
const TABLE: [&str; 9] = ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi", "Yi"];
let mut i = 0;
let mut scaled = x;
while scaled.abs() >= 1000.0 && i < TABLE.len() - 1 {
i += 1;
scaled /= 1024.0;
}
(scaled, TABLE[i])
}
struct RateEstimate {
state: Option<RateEstimateState>,
}
impl RateEstimate {
fn new() -> Self {
RateEstimate { state: None }
}
/// Compute smoothed rate from an update
fn update(&mut self, now: Instant, total: u64) -> Option<f32> {
if let Some(ref mut state) = self.state {
return Some(state.update(now, total));
}
self.state = Some(RateEstimateState {
total,
avg_rate: None,
last_sample: now,
});
None
}
}
struct RateEstimateState {
total: u64,
avg_rate: Option<f32>,
last_sample: Instant,
}
impl RateEstimateState {
fn update(&mut self, now: Instant, total: u64) -> f32 {
let delta = total - self.total;
self.total = total;
let dt = now - self.last_sample;
self.last_sample = now;
let sample = delta as f32 / dt.as_secs_f32();
match self.avg_rate {
None => *self.avg_rate.insert(sample),
Some(ref mut avg_rate) => {
// From Algorithms for Unevenly Spaced Time Series: Moving
// Averages and Other Rolling Operators (Andreas Eckner, 2019)
const TIME_WINDOW: f32 = 2.0;
let alpha = 1.0 - (-dt.as_secs_f32() / TIME_WINDOW).exp();
*avg_rate += alpha * (sample - *avg_rate);
*avg_rate
}
}
}
}