ok/jj
1
0
Fork 0
forked from mirrors/jj

index: implement RevWalk that filters descendants with generation from roots

We could add `walk.descendants(root_positions)` method, and apply
`.filter_by_generation(range)`, but queue-based `.descendants()` would be
slower than the one using reachable set. So I didn't add such method.

I also considered reimplementing non-lazy version of this function without
using the current RevWalkGenerationRange, but it appears the current iterator
version performs well even if we have to do .collect_vec() and .reverse().
This commit is contained in:
Yuya Nishihara 2023-04-21 17:06:51 +09:00
parent be5d380f2e
commit 524db833f7

View file

@ -1200,6 +1200,61 @@ impl<'a> RevWalkIndexEntry<'a> for IndexEntryByPosition<'a> {
} }
} }
#[derive(Clone)]
struct RevWalkDescendantsIndex<'a> {
index: CompositeIndex<'a>,
children_map: HashMap<IndexPosition, Vec<IndexPosition>>,
}
impl<'a> RevWalkDescendantsIndex<'a> {
fn build<'b>(
index: CompositeIndex<'a>,
entries: impl IntoIterator<Item = IndexEntry<'b>>,
) -> Self {
// For dense set, it's probably cheaper to use `Vec` instead of `HashMap`.
let mut children_map: HashMap<IndexPosition, Vec<IndexPosition>> = HashMap::new();
for entry in entries {
children_map.entry(entry.position()).or_default(); // mark head node
for parent_pos in entry.parent_positions() {
let parent = children_map.entry(parent_pos).or_default();
parent.push(entry.position());
}
}
RevWalkDescendantsIndex {
index,
children_map,
}
}
fn contains_pos(&self, pos: IndexPosition) -> bool {
self.children_map.contains_key(&pos)
}
}
impl<'a> RevWalkIndex<'a> for RevWalkDescendantsIndex<'a> {
type Entry = Reverse<IndexEntryByPosition<'a>>;
fn entry_by_pos(&self, pos: IndexPosition) -> Self::Entry {
Reverse(IndexEntryByPosition(self.index.entry_by_pos(pos)))
}
// TODO: SmallVec, Cow, or GAT AdjacentIter to eliminate .clone()
fn adjacent_positions(&self, entry: &IndexEntry<'_>) -> Vec<IndexPosition> {
self.children_map[&entry.position()].clone()
}
}
impl<'a> RevWalkIndexEntry<'a> for Reverse<IndexEntryByPosition<'a>> {
fn as_index_entry(&self) -> &IndexEntry<'a> {
self.0.as_index_entry()
}
fn into_index_entry(self) -> IndexEntry<'a> {
self.0.into_index_entry()
}
}
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd)] #[derive(Clone, Eq, PartialEq, Ord, PartialOrd)]
struct RevWalkWorkItem<E, T> { struct RevWalkWorkItem<E, T> {
entry: E, entry: E,
@ -1360,6 +1415,29 @@ impl<'a> RevWalk<'a> {
let bottom_position = *root_positions.iter().min().unwrap_or(&IndexPosition::MAX); let bottom_position = *root_positions.iter().min().unwrap_or(&IndexPosition::MAX);
self.take_while(move |entry| entry.position() >= bottom_position) self.take_while(move |entry| entry.position() >= bottom_position)
} }
/// Fully consumes the ancestors and walks back from `root_positions` within
/// `generation_range`.
///
/// The returned iterator yields entries in order of ascending index
/// position.
pub fn descendants_filtered_by_generation(
self,
root_positions: &[IndexPosition],
generation_range: Range<u32>,
) -> RevWalkDescendantsGenerationRange<'a> {
let index = self.0.queue.index.clone();
let entries = self.take_until_roots(root_positions);
let descendants_index = RevWalkDescendantsIndex::build(index, entries);
let mut queue = RevWalkQueue::new(descendants_index);
for &pos in root_positions {
// Do not add unreachable roots which shouldn't be visited
if queue.index.contains_pos(pos) {
queue.push_wanted(pos, ());
}
}
RevWalkDescendantsGenerationRange(RevWalkGenerationRangeImpl::new(queue, generation_range))
}
} }
impl<'a> Iterator for RevWalk<'a> { impl<'a> Iterator for RevWalk<'a> {
@ -1410,6 +1488,19 @@ impl<'a> Iterator for RevWalkGenerationRange<'a> {
} }
} }
#[derive(Clone)]
pub struct RevWalkDescendantsGenerationRange<'a>(
RevWalkGenerationRangeImpl<'a, RevWalkDescendantsIndex<'a>>,
);
impl<'a> Iterator for RevWalkDescendantsGenerationRange<'a> {
type Item = IndexEntry<'a>;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
#[derive(Clone)] #[derive(Clone)]
struct RevWalkGenerationRangeImpl<'a, I: RevWalkIndex<'a>> { struct RevWalkGenerationRangeImpl<'a, I: RevWalkIndex<'a>> {
// Sort item generations in ascending order // Sort item generations in ascending order
@ -2848,6 +2939,116 @@ mod tests {
); );
} }
#[test]
fn test_walk_revs_descendants_filtered_by_generation() {
let mut new_change_id = change_id_generator();
let mut index = MutableIndexImpl::full(3, 16);
// 8 6
// | |
// 7 5
// |/|
// 4 |
// | 3
// 2 |
// |/
// 1
// |
// 0
let id_0 = CommitId::from_hex("000000");
let id_1 = CommitId::from_hex("111111");
let id_2 = CommitId::from_hex("222222");
let id_3 = CommitId::from_hex("333333");
let id_4 = CommitId::from_hex("444444");
let id_5 = CommitId::from_hex("555555");
let id_6 = CommitId::from_hex("666666");
let id_7 = CommitId::from_hex("777777");
let id_8 = CommitId::from_hex("888888");
index.add_commit_data(id_0.clone(), new_change_id(), &[]);
index.add_commit_data(id_1.clone(), new_change_id(), &[id_0.clone()]);
index.add_commit_data(id_2.clone(), new_change_id(), &[id_1.clone()]);
index.add_commit_data(id_3.clone(), new_change_id(), &[id_1.clone()]);
index.add_commit_data(id_4.clone(), new_change_id(), &[id_2.clone()]);
index.add_commit_data(id_5.clone(), new_change_id(), &[id_4.clone(), id_3.clone()]);
index.add_commit_data(id_6.clone(), new_change_id(), &[id_5.clone()]);
index.add_commit_data(id_7.clone(), new_change_id(), &[id_4.clone()]);
index.add_commit_data(id_8.clone(), new_change_id(), &[id_7.clone()]);
let visible_heads = [&id_6, &id_8].map(Clone::clone);
let walk_commit_ids = |roots: &[CommitId], heads: &[CommitId], range: Range<u32>| {
let root_positions = roots
.iter()
.map(|id| index.as_composite().commit_id_to_pos(id).unwrap())
.collect_vec();
index
.walk_revs(heads, &[])
.descendants_filtered_by_generation(&root_positions, range)
.map(|entry| entry.commit_id())
.collect_vec()
};
// Empty generation bounds
assert_eq!(
walk_commit_ids(&[&id_0].map(Clone::clone), &visible_heads, 0..0),
[]
);
assert_eq!(
walk_commit_ids(
&[&id_8].map(Clone::clone),
&visible_heads,
Range { start: 2, end: 1 }
),
[]
);
// Full generation bounds
assert_eq!(
walk_commit_ids(&[&id_0].map(Clone::clone), &visible_heads, 0..u32::MAX),
[&id_0, &id_1, &id_2, &id_3, &id_4, &id_5, &id_6, &id_7, &id_8].map(Clone::clone)
);
// Simple generation bounds
assert_eq!(
walk_commit_ids(&[&id_3].map(Clone::clone), &visible_heads, 0..3),
[&id_3, &id_5, &id_6].map(Clone::clone)
);
// Descendants may be walked with different generations
assert_eq!(
walk_commit_ids(&[&id_0].map(Clone::clone), &visible_heads, 2..4),
[&id_2, &id_3, &id_4, &id_5].map(Clone::clone)
);
assert_eq!(
walk_commit_ids(&[&id_1].map(Clone::clone), &visible_heads, 2..3),
[&id_4, &id_5].map(Clone::clone)
);
assert_eq!(
walk_commit_ids(&[&id_2, &id_3].map(Clone::clone), &visible_heads, 2..3),
[&id_5, &id_6, &id_7].map(Clone::clone)
);
assert_eq!(
walk_commit_ids(&[&id_2, &id_4].map(Clone::clone), &visible_heads, 0..2),
[&id_2, &id_4, &id_5, &id_7].map(Clone::clone)
);
assert_eq!(
walk_commit_ids(&[&id_2, &id_3].map(Clone::clone), &visible_heads, 0..3),
[&id_2, &id_3, &id_4, &id_5, &id_6, &id_7].map(Clone::clone)
);
assert_eq!(
walk_commit_ids(&[&id_2, &id_3].map(Clone::clone), &visible_heads, 2..3),
[&id_5, &id_6, &id_7].map(Clone::clone)
);
// Roots set contains entries unreachable from heads
assert_eq!(
walk_commit_ids(
&[&id_2, &id_3].map(Clone::clone),
&[&id_8].map(Clone::clone),
0..3
),
[&id_2, &id_4, &id_7].map(Clone::clone)
);
}
#[test] #[test]
fn test_heads() { fn test_heads() {
let mut new_change_id = change_id_generator(); let mut new_change_id = change_id_generator();