This mostly reverts https://github.com/martinvonz/jj/pull/2901 as well as its
fixup https://github.com/martinvonz/jj/pull/2903. The related bug is reopened,
see https://github.com/martinvonz/jj/issues/2869#issuecomment-1920367932.
The problem is that while the fix did fix#2869 in most cases, it did
reintroduce the more severe bug https://github.com/martinvonz/jj/issues/2760
in one case, if the working copy is the commit being rebased.
For example, suppose you have the tree
```
root -> A -> B -> @ (empty) -> C
```
### Before this commit
#### Case 1
`jj rebase -s B -d root --skip-empty` would work perfectly before this
commit, resulting in
```
root -> A
\-------B -> C
\- @ (new, empty)
```
#### Case 2
Unfortunately, if you run `jj rebase -s @ -d A --skip-empty`, you'd have the
following result (before this commit), which shows the reintroduction of #2760:
```
root -> A @ -> C
\-- B
```
with the working copy at `A`. The reason for this is explained in
https://github.com/martinvonz/jj/pull/2901#issuecomment-1920043560.
### After this commit
After this commit, both case 1 and case 2 will be wrong in the sense of #2869,
but it will no longer exhibit the worse bug #2760 in the second case.
Case 1 would result in:
```
root -> A
\-------B -> @ (empty) -> C
```
Case 2 would result in:
```
root -> A -> @ -> C
\-- B
```
with the working copy remaining a descendant of A
`rebase_next()` returns an `Option<RebasedDescendant>`, but the only
way we use it is to decide whether to terminate the loop over
`to_visit`. Let's simplify by making the caller iterate over
`to_visit` instead.
The `edit` argument seems to be true if and only if the
old commit was *not* abandoned. So, I flipped its value
and renamed it to `abandoned_old_commit`.
I'm going to add a prefix resolution method to OpStore, but OpStore is
unrelated to the index. I think ObjectId, HexPrefix, and PrefixResolution can
be extracted to this module.
Fixes#2760
Given the tree:
```
A-B-C
\
B2
```
And the command `jj rebase -s B -d B2`
We were previously marking B as abandoned, despite the comment stating that we were marking it as being succeeded by B2. This resulted in a call to `rewrite(rewrites={}, abandoned={B})` instead of `rewrite(rewrites={B=>B2}, abandoned={})`, which then made the new parent of `C` into `A` instead of `B2`
Finally, there are no test uses of these APIs. `DescendantRebaser` is made
`pub(crate)`, since it is used by `MutRepo`. Other functions are made private.
This commit is a little out of place in this sequence, but
it seems to make more sense for MutRepo to own these maps.
@yuja [pointed out] that any tests written using `create_descendant_rebaser` now
need to do this cleanup, but there are no longer any such tests after the
previous commits and a follow-up commit removes `create_descendant_rebaser`
entirely.
[pointed out]: https://github.com/martinvonz/jj/pull/2737#discussion_r1435754370
Previously, the function relied on both the `self.parent_mapping` and
`self.rebased`. If `(A,B)` was in `parent_mapping` and `(B,C)` was in `rebased`,
`new_parents` would map `A` to `C`.
Now, `self.rebased` is ignored by `new_parents`. In the same situation,
DescendantRebaser is changed so that both `(A,B)` and `(B,C)` are in
`parent_mapping` before. `new_parents` now applies `parent_mapping` repeatedly,
and will map `A` to `C` in this situation.
## Cons
- The semantics are changed; `new_parents` now panics if `self.parent_mapping`
contain cycles. AFAICT, such cycles never happen in `jj` anyway, except for
one test that I had to fix. I think it's a sensible restriction to live with;
if you do want to swap children of two commits, you can call
`rebase_descendants` twice.
## Pros
- I find the new logic much easier to reason about. I plan to extract it into a
function, to be used in refactors for `jj rebase -r` and `jj new --after`. It
will make it much easier to have a correct implementation of `jj rebase -r
--after`, even when rebasing onto a descendant.
- The de-duplication is no longer O(n^2). I tried to keep the common case fast.
## Alternatives
- We could make `jj rebase` and `jj new` use a separate function with the
algorithm shown here, without changing DescendantRebaser. I believe that the new
algorithm makes DescendatRebaser easier to understand, though, and it feels more
elegant to reduce code duplication.
- The de-duplication optimization here is independent of other changes, and
could be used on its own.
This enables cheap str-to-RepoPath cast, which is useful when sorting and
filtering a large Vec<(String, _)> list by using matcher for example. It
will also eliminate temporary allocation by repo_path.parent().
This follows up on 3967f63 (see that commit's description for more
motivation) and e79c8b6.
In a discussion linked below, it was decided that forbidding `-r --skip-empty`
entirely is preferable to the mixed behavior introduced in 3967f63.
3967f637dc (commitcomment-133539911)
`RevsetExpression::resolve()` is meant for programmatically created
expressions. In particular, it may not contain symbols. Let's try to
clarify that by renaming the function and documenting it.
What make rebase_to_dest_parent a good candidate for jj_lib::rewrite module:
- It is used both in obslog and interdiff. It's a sign that it may be moved to a lower layer
- CommandError is returned by converting from TreeMergeError. Not explicitly.
- It only use jj_lib::rewrite fonctions.
We had similar code in two places for restoring paths from one tree to
another. Let's reuse it instead.
I put the new function in the `rewrite` module. I'm not sure if that's
right place. Maybe it belongs in `tree`?
Since local/remote branches are now of different types, it doesn't make much
sense to dispatch merging through RefName. Let's add merge_<kind>() methods
instead.
Many (most?) callers of `Store::empty_tree_id()` really want a
`MergedTreeId`, so let's create a helper for that. It returns the
`Legacy` variant, which is what all current callers used. That should
be all we need since the two variants compare equal these days, and
since trees built based on the legacy variant can get promoted to the
new variant on write if the config is enabled.
Since RefTarget will be reimplemented on top of Conflict<Option<CommitId>>,
we won't be able to simply return a slice of type &[CommitId]. These functions
are also renamed in order to disambiguate from Conflict::adds()/removes().
It's named after Conflict::from_legacy_form(). If RefTarget is migrated to
new Conflict type, from_legacy_form([], [add]) will create a normal target,
and from_legacy_form([], []) will be equivalent to the current None target.
That's why this function isn't named as RefTarget::conflict().
I don't think we'll want to record a label for each term, because such
labels would get stale, and it seems hard to make them make sense
after transferring a remote to another repo. I think we'll probably
want to infer labels on demand instead (#1176).