If we're going to be able to replace most instances of `Tree` by
`MergedTree`, we'll need to be able to diff two `MergedTree`s. This
implements support for that. The implementation copies a lot from the
diff iterator we have for `Tree`. I suspect we should be able to reuse
some of the code by introducing some traits that can then be
implemented by both `Tree` and `MergedTree`. I've left a TODO about
that.
Since `Conflict<T>` can also represent a non-conflict state (a single
term), `Merge<T>` seems like better name.
Thanks to @ilyagr for the suggestion in
https://github.com/martinvonz/jj/pull/1774#discussion_r1257547709
Sorry about the churn. It would have been better if I thought of this
name before I introduced `Conflict<T>`.
With `MergedTree`, we can iterate over conflicts by descending into
only the subdirectories that cannot be trivially resolved. We assume
that the trees have previously been resolved as much as possible, so
we don't attempt to resolve conflicts again.
This adds a function for resolving conflicts that can be automatically
resolved, i.e. like our current `merge_trees()` function. However, the
new function is written to merge an arbitrary number of trees and, in
case of unresolvable conflicts, to produce a `Conflict<TreeId>` as
result instead of writing path-level conflicts to the backend. Like
`merge_trees()`, it still leaves conflicts unresolved at the file
level if any hunks conflict, and it resolves paths that can be
trivially resolved even if there are other paths that do conflict.
In order to store conflicts in the commit, as conflicts between a set
of trees, we want to be able merge those trees on the fly. This
introduces a type for that. It has a `Merge(Conflict(Tree))` variant,
where the individual trees cannot have path-level conflicts. It also
has a `Legacy(Tree)` variant, which does allow path-level conflicts. I
think that should help us with the migration.