We used to use the value to detect races, but we use the tree ID and
the operation ID these days, so we don't need the commit ID.
By changing this, we can avoid creating some commit IDs in tests,
which is why I tackled this issue now.
There are only two callers of `LockedWorkingCopy::check_out()`. One is
in `commands.rs`. That caller already checks after taking the lock
that the old commit ID is as expected. The other caller is
`WorkingCopy::check_out()`. We can simply move the check to that level
since it's the only caller that cares now.
`LockedWorkingCopy::discard()` shouldn't result in changes to the
on-disk state, but `LockedWorkingCopy::check_out()` may have already
written a state file, which is surprising. The changes also remain in
memory, which is also surprising. Let's fix both of those issues.
One of the .gitignore tests writes a tree from the working copy
twice. However, it discards the `LockedWorkingCopy` instance after the
first write, so the second write shouldn't really see the changes from
the first write. It does see them because we don't clear them in
memory (and we also surprisingly write them to disk). I'm about to fix
that, so the test needs to be fixed first.
Most tests need a repo but don't need a working copy. Let's have a
function for setting up a test repo. But first, let's free up the name
`init_repo()` by renaming it to `init_workspace()` (which is also more
accurate).
When there are concurrent operations that want to update the working
copy, it's useful to know which operation was the last to successfully
update the working copy. That can help use decide how to resolve a
mismatch between the repo view's record and the working copy's
record. If we detect such a difference, we can look at the working
copy's operation ID to see if it was updated by an operation before or
after we loaded the repo.
If the working copy's record says that it was updated at operation A
and we have loaded the repo at operation B (after A), we know that the
working copy is stale, so we can automatically update it (or tell the
user to run some command to update it if we think that's more
user-friendly).
Conversely, if we have loaded the repo at operation A and the working
copy's record says that it was updated at operation B, we know that
there was some concurrent operation that updated it. We can then
decide to print a warning telling the user that we skipped updating
because of the conflict. We already have logic for not updating the
working copy if the repo is loaded at an earlier operation, but maybe
we can drop that if we record the operation in the working copy (as
this patch does).
`WorkingCopy::check_out()` currently fails if the commit recorded on
disk has changed since it was last read. It fails with a "concurrent
checkout" error. That usually works well in practice, but one can
imagine cases where it's not correct. For an example where the current
behavior is wrong, consider this sequence of events:
1. Process A loads the repo and working copy.
2. Process B loads the repo at operation A. It has not loaded the
working copy yet.
3. Process A writes an operation and updates the working copy.
4. Process B loads the working copy and sees that it is checked out
to the commit process B set it to. We don't currently have any
checks that the working copy commit matches the view's checkout
(though I plan to add that).
5. Process B finishes its operation (which is now divergent with the
operation written by process A). It updates the working copy to
the checkout set in the repo view by process B. There's no data
loss here, but the behavior is surprising because we would usually
tell the user that we detected a concurrent update to the working
copy.
We should instead check that the working copy's commit on disk matches
what the previous repo view said, i.e. the view at the start of the
operation we just committed. This patch does that by having the caller
pass in the expected old commit ID.
We already have two usecases that can be modeled as updating the
`TreeState` without touching the working copy:
1. `jj untrack` can be implemented as removing paths from the tree
object and then doing a reset of the working copy state.
2. Importing Git HEAD when sharing the working copy with a Git repo.
This patch adds that functionality to `TreeState`.
This patch changes the interface for making changes to the working
copy by replacing `write_tree()` and `untrack()` by a single
`start_mutation()` method. The two functions now live on the returned
`LockedWorkingCopy` object instead. That is more flexible because the
caller can make multiple changes while the working copy is locked. It
also helps us reduce the risk of buggy callers that read the commit ID
before taking the lock, because we can now make it accessible only on
`LockedWorkingCopy`.
`WorkingCopy::current_commit()` has been there from the beginning. It
has made less sense since we made the repo view keep track of the
current checkout. Let's remove it.
The `Repo` doesn't do anything with the `WorkingCopy` except keeping a
reference to it for its users to use. In fact, the entire lib crate
doesn't do antyhing with the `WorkingCopy`. It therefore seems simpler
to have the users of the crate manage the `WorkingCopy` instance. This
patch does that by letting `Workspace` own it. By not keeping an
instance in `Repo`, which is `Sync`, we can also drop the
`Arc<Mutex<>>` wrapping.
I left `Repo::working_copy()` for convenience for now, but now it
creates a new instance every time. It's only used in tests.
This further decoupling should help us add support for multiple
working copies (#13).
I realized only recently that we can try to parse conflict markers in
files and leave them as conflicted if they haven't changed. If they
have changed and some conflict markers have been removed, we can even
update the conflict with that partial resolution.
This change teaches the working copy to write conflicts to the working
copy. It used to expect that the caller had already updated the tree
by materializing conflicts. With this change, we also start parsing
the conflict markers and leave the conflicts unresolved in the working
copy if the conflict markers remain.
There are some cases that we don't handle yet. For example, we don't
even try to set the executable bit correctly when we write
conflicts. OTOH, we didn't do that even before this change.
We still never actually write conflicts to the working copy (outside
of tests) because we currently materialize conflicts in
`MutRepo::check_out()`. I'll change that next.
Git doesn't want `.git` entries in its trees, so at least when using
the Git backend, we need to ignore such paths. Let's just ignore
`.git` paths regardless of backend to keep it simple.
Closes#24.
The auto-rebasing of descendants doesn't work if you have an open
commit checked out, which means that you may still end up with orphans
in that case (though that's usually a short-lived problem since they
get rebased when you close the commit). I'm also about to make
branches update to successors, but that also doesn't work when the
branch is on a working copy commit that gets rewritten. To fix this
problem, I've decided to let the caller of `WorkingCopy::commit()`
responsible for the transaction.
I expect that some of the code that this change moves from the lib
crate to the cli crate will later move back into the lib crate in some
form.
This change teaches `Tree::diff()` to filter by a matcher. It only
filters the result so far; it does not restrict the tree walk to what
`Matcher::visit()` says is necessary yet. It also doesn't teach the
CLI to create a matcher and pass it in.
I had initially hoped that the type-safety provided by the separate
`FileRepoPath` and `DirRepoPath` types would help prevent bugs. I'm
not sure if it has prevented any bugs so far. It has turned out that
there are more cases than I had hoped where it's unknown whether a
path is for a directory or a file. One such example is for the path of
a conflict. Since it can be conflict between a directory and a file,
it doesn't make sense to use either. Instead we end up with quite a
bit of conversion between the types. I feel like they are not worth
the extra complexity. This patch therefore starts simplifying it by
replacing uses of `FileRepoPath` by `RepoPath`. `DirRepoPath` is a
little more complicated because its string form ends with a '/'. I'll
address that in separate patches.
I suspect that at least one reason that I didn't make
`MutableRepo::base_repo` by an `Arc<ReadonlyRepo>` before was that I
thought that that would mean that `start_transaction()` would need be
moved off of `ReadonlyRepo` so it can be given an
`&Arc<ReadonlyRepo>`, which would make it much less convenient to
use. It turns out that a `self` argument can actually be of type
`&Arc<ReadonlyRepo>`.
I just changed my `~/.gitignore` and some tests started failing
because the working copy respects the user's `~/.gitignore`. We should
probably not depend on `$HOME` in the library crate. For now, this
patch just makes sure we set it to an arbitrary directory in the tests
where it matters.
I want to keep the index updated within the transaction. I tried doing
that by adding a `trait Index`, implemented by `ReadonlyIndex` and
`MutableIndex`. However, `ReadonlyRepo::index` is of type
`Mutex<Option<Arc<IndexFile>>>` (because it is lazily initialized),
and we cannot get a `&dyn Index` that lives long enough to be returned
from a `Repo::index()` from that. It seems the best solution is to
instead create an `Index` enum (instead of a trait), with one readonly
and one mutable variant. This commit starts the migration to that
design by replacing the `Repo` trait by an enum. I never intended for
there there to be more implementations of `Repo` than `ReadonlyRepo`
and `MutableRepo` anyway.
I'm preparing to publish an early version before someone takes the
name(s) on crates.io. "jj" has been taken by a seemingly useless
project, but "jujube" and "jujube-lib" are still available, so let's
use those.
The point of having the `modified` and `removed` files in the test was
to show that they don't get untracked, but I forgot to include them in
the `.gitignores`, so there was no reason they would have gotten
untracked anyway.
The project's source of truth is now in Git and I really miss support
for anonymous heads and evolution (compared to when the code was in
Mercurial). I'm therefore more motivated to make the tool useful for
day-to-day work on small repos, so I can use it myself. Until now, I
had been more focused on improving performance when it was used as a
read-only client for medium-to-large repos.
One important feature for my day-to-day work is support for
ignores. This commit adds simple and effective, but somewhat hacky
support for that. libgit2 requires a repo to check if a file should be
ignored (presumably so it can respect `.git/info/excludes`). To work
around that, we create a temporary git repo in `/tmp/` whenever the
working copy is committed. We set that temporary git repo's working
copy to be shared with our own working copy. Due to
https://github.com/libgit2/libgit2sharp/issues/1716 (which seems to
apply to the non-.NET version as well), this workaround unfortunately
leaves a .git file (pointing to the deleted temporary git repo) around
in every Jujube repo. That's always ignored by libgit2, so it's not
much of a problem.