ok/jj
1
0
Fork 0
forked from mirrors/jj
jj/lib/src/revset.rs

4116 lines
141 KiB
Rust

// Copyright 2021 The Jujutsu Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use std::convert::Infallible;
use std::ops::Range;
use std::path::Path;
use std::rc::Rc;
use std::str::FromStr;
use std::sync::Arc;
use std::{error, fmt};
use itertools::Itertools;
use once_cell::sync::Lazy;
use pest::iterators::{Pair, Pairs};
use pest::pratt_parser::{Assoc, Op, PrattParser};
use pest::Parser;
use pest_derive::Parser;
use thiserror::Error;
use crate::backend::{BackendError, BackendResult, ChangeId, CommitId, ObjectId};
use crate::commit::Commit;
use crate::git::get_git_tracking_branch;
use crate::hex_util::to_forward_hex;
use crate::index::{HexPrefix, PrefixResolution};
use crate::op_store::WorkspaceId;
use crate::repo::Repo;
use crate::repo_path::{FsPathParseError, RepoPath};
use crate::store::Store;
/// Error occurred during symbol resolution.
#[derive(Debug, Error)]
pub enum RevsetResolutionError {
#[error("Revision \"{name}\" doesn't exist")]
NoSuchRevision {
name: String,
candidates: Vec<String>,
},
#[error("An empty string is not a valid revision")]
EmptyString,
#[error("Commit ID prefix \"{0}\" is ambiguous")]
AmbiguousCommitIdPrefix(String),
#[error("Change ID prefix \"{0}\" is ambiguous")]
AmbiguousChangeIdPrefix(String),
#[error("Unexpected error from store: {0}")]
StoreError(#[source] BackendError),
}
/// Error occurred during revset evaluation.
#[derive(Debug, Error)]
pub enum RevsetEvaluationError {
#[error("Unexpected error from store: {0}")]
StoreError(#[source] BackendError),
#[error("{0}")]
Other(String),
}
#[derive(Parser)]
#[grammar = "revset.pest"]
pub struct RevsetParser;
#[derive(Debug)]
pub struct RevsetParseError {
kind: RevsetParseErrorKind,
pest_error: Option<Box<pest::error::Error<Rule>>>,
origin: Option<Box<RevsetParseError>>,
}
#[derive(Debug, Error, PartialEq, Eq)]
pub enum RevsetParseErrorKind {
#[error("Syntax error")]
SyntaxError,
#[error("'{op}' is not a postfix operator")]
NotPostfixOperator {
op: String,
similar_op: String,
description: String,
},
#[error("'{op}' is not an infix operator")]
NotInfixOperator {
op: String,
similar_op: String,
description: String,
},
#[error(r#"Revset function "{name}" doesn't exist"#)]
NoSuchFunction {
name: String,
candidates: Vec<String>,
},
#[error("Invalid arguments to revset function \"{name}\": {message}")]
InvalidFunctionArguments { name: String, message: String },
#[error("Invalid file pattern: {0}")]
FsPathParseError(#[source] FsPathParseError),
#[error("Cannot resolve file pattern without workspace")]
FsPathWithoutWorkspace,
#[error("Redefinition of function parameter")]
RedefinedFunctionParameter,
#[error(r#"Alias "{0}" cannot be expanded"#)]
BadAliasExpansion(String),
#[error(r#"Alias "{0}" expanded recursively"#)]
RecursiveAlias(String),
}
impl RevsetParseError {
fn new(kind: RevsetParseErrorKind) -> Self {
RevsetParseError {
kind,
pest_error: None,
origin: None,
}
}
fn with_span(kind: RevsetParseErrorKind, span: pest::Span<'_>) -> Self {
let err = pest::error::Error::new_from_span(
pest::error::ErrorVariant::CustomError {
message: kind.to_string(),
},
span,
);
RevsetParseError {
kind,
pest_error: Some(Box::new(err)),
origin: None,
}
}
fn with_span_and_origin(
kind: RevsetParseErrorKind,
span: pest::Span<'_>,
origin: Self,
) -> Self {
let err = pest::error::Error::new_from_span(
pest::error::ErrorVariant::CustomError {
message: kind.to_string(),
},
span,
);
RevsetParseError {
kind,
pest_error: Some(Box::new(err)),
origin: Some(Box::new(origin)),
}
}
pub fn kind(&self) -> &RevsetParseErrorKind {
&self.kind
}
/// Original parsing error which typically occurred in an alias expression.
pub fn origin(&self) -> Option<&Self> {
self.origin.as_deref()
}
}
impl From<pest::error::Error<Rule>> for RevsetParseError {
fn from(err: pest::error::Error<Rule>) -> Self {
RevsetParseError {
kind: RevsetParseErrorKind::SyntaxError,
pest_error: Some(Box::new(err)),
origin: None,
}
}
}
impl fmt::Display for RevsetParseError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(err) = &self.pest_error {
err.fmt(f)
} else {
self.kind.fmt(f)
}
}
}
impl error::Error for RevsetParseError {
fn source(&self) -> Option<&(dyn error::Error + 'static)> {
if let Some(e) = self.origin() {
return Some(e as &dyn error::Error);
}
match &self.kind {
// SyntaxError is a wrapper for pest::error::Error.
RevsetParseErrorKind::SyntaxError => {
self.pest_error.as_ref().map(|e| e as &dyn error::Error)
}
// Otherwise the kind represents this error.
e => e.source(),
}
}
}
// assumes index has less than u64::MAX entries.
pub const GENERATION_RANGE_FULL: Range<u64> = 0..u64::MAX;
pub const GENERATION_RANGE_EMPTY: Range<u64> = 0..0;
/// Symbol or function to be resolved to `CommitId`s.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum RevsetCommitRef {
Symbol(String),
VisibleHeads,
Branches(String),
RemoteBranches {
branch_needle: String,
remote_needle: String,
},
Tags,
GitRefs,
GitHead,
}
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum RevsetFilterPredicate {
/// Commits with number of parents in the range.
ParentCount(Range<u32>),
/// Commits with description containing the needle.
Description(String),
/// Commits with author's name or email containing the needle.
Author(String),
/// Commits with committer's name or email containing the needle.
Committer(String),
/// Commits modifying the paths specified by the pattern.
File(Option<Vec<RepoPath>>), // TODO: embed matcher expression?
/// Commits with conflicts
HasConflict,
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum RevsetExpression {
None,
All,
Commits(Vec<CommitId>),
CommitRef(RevsetCommitRef),
Ancestors {
heads: Rc<RevsetExpression>,
generation: Range<u64>,
},
Descendants {
roots: Rc<RevsetExpression>,
generation: Range<u64>,
},
// Commits that are ancestors of "heads" but not ancestors of "roots"
Range {
roots: Rc<RevsetExpression>,
heads: Rc<RevsetExpression>,
generation: Range<u64>,
},
// Commits that are descendants of "roots" and ancestors of "heads"
DagRange {
roots: Rc<RevsetExpression>,
heads: Rc<RevsetExpression>,
// TODO: maybe add generation_from_roots/heads?
},
Heads(Rc<RevsetExpression>),
Roots(Rc<RevsetExpression>),
Latest {
candidates: Rc<RevsetExpression>,
count: usize,
},
Filter(RevsetFilterPredicate),
/// Marker for subtree that should be intersected as filter.
AsFilter(Rc<RevsetExpression>),
Present(Rc<RevsetExpression>),
NotIn(Rc<RevsetExpression>),
Union(Rc<RevsetExpression>, Rc<RevsetExpression>),
Intersection(Rc<RevsetExpression>, Rc<RevsetExpression>),
Difference(Rc<RevsetExpression>, Rc<RevsetExpression>),
}
impl RevsetExpression {
pub fn none() -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::None)
}
pub fn all() -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::All)
}
pub fn symbol(value: String) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::CommitRef(RevsetCommitRef::Symbol(value)))
}
pub fn commit(commit_id: CommitId) -> Rc<RevsetExpression> {
RevsetExpression::commits(vec![commit_id])
}
pub fn commits(commit_ids: Vec<CommitId>) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Commits(commit_ids))
}
pub fn visible_heads() -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::CommitRef(RevsetCommitRef::VisibleHeads))
}
pub fn branches(needle: String) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::CommitRef(RevsetCommitRef::Branches(
needle,
)))
}
pub fn remote_branches(branch_needle: String, remote_needle: String) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::CommitRef(
RevsetCommitRef::RemoteBranches {
branch_needle,
remote_needle,
},
))
}
pub fn tags() -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::CommitRef(RevsetCommitRef::Tags))
}
pub fn git_refs() -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::CommitRef(RevsetCommitRef::GitRefs))
}
pub fn git_head() -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::CommitRef(RevsetCommitRef::GitHead))
}
pub fn latest(self: &Rc<RevsetExpression>, count: usize) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Latest {
candidates: self.clone(),
count,
})
}
pub fn filter(predicate: RevsetFilterPredicate) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Filter(predicate))
}
/// Commits in `self` that don't have descendants in `self`.
pub fn heads(self: &Rc<RevsetExpression>) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Heads(self.clone()))
}
/// Commits in `self` that don't have ancestors in `self`.
pub fn roots(self: &Rc<RevsetExpression>) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Roots(self.clone()))
}
/// Parents of `self`.
pub fn parents(self: &Rc<RevsetExpression>) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Ancestors {
heads: self.clone(),
generation: 1..2,
})
}
/// Ancestors of `self`, including `self`.
pub fn ancestors(self: &Rc<RevsetExpression>) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Ancestors {
heads: self.clone(),
generation: GENERATION_RANGE_FULL,
})
}
/// Children of `self`.
pub fn children(self: &Rc<RevsetExpression>) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Descendants {
roots: self.clone(),
generation: 1..2,
})
}
/// Descendants of `self`, including `self`.
pub fn descendants(self: &Rc<RevsetExpression>) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Descendants {
roots: self.clone(),
generation: GENERATION_RANGE_FULL,
})
}
/// Commits that are descendants of `self` and ancestors of `heads`, both
/// inclusive.
pub fn dag_range_to(
self: &Rc<RevsetExpression>,
heads: &Rc<RevsetExpression>,
) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::DagRange {
roots: self.clone(),
heads: heads.clone(),
})
}
/// Connects any ancestors and descendants in the set by adding the commits
/// between them.
pub fn connected(self: &Rc<RevsetExpression>) -> Rc<RevsetExpression> {
self.dag_range_to(self)
}
/// Commits reachable from `heads` but not from `self`.
pub fn range(
self: &Rc<RevsetExpression>,
heads: &Rc<RevsetExpression>,
) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Range {
roots: self.clone(),
heads: heads.clone(),
generation: GENERATION_RANGE_FULL,
})
}
/// Commits that are not in `self`, i.e. the complement of `self`.
pub fn negated(self: &Rc<RevsetExpression>) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::NotIn(self.clone()))
}
/// Commits that are in `self` or in `other` (or both).
pub fn union(
self: &Rc<RevsetExpression>,
other: &Rc<RevsetExpression>,
) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Union(self.clone(), other.clone()))
}
/// Commits that are in `self` and in `other`.
pub fn intersection(
self: &Rc<RevsetExpression>,
other: &Rc<RevsetExpression>,
) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Intersection(self.clone(), other.clone()))
}
/// Commits that are in `self` but not in `other`.
pub fn minus(
self: &Rc<RevsetExpression>,
other: &Rc<RevsetExpression>,
) -> Rc<RevsetExpression> {
Rc::new(RevsetExpression::Difference(self.clone(), other.clone()))
}
pub fn resolve(
self: Rc<Self>,
repo: &dyn Repo,
) -> Result<ResolvedExpression, RevsetResolutionError> {
let symbol_resolver = FailingSymbolResolver;
resolve_symbols(repo, self, &symbol_resolver)
.map(|expression| resolve_visibility(repo, &expression))
}
pub fn resolve_user_expression(
self: Rc<Self>,
repo: &dyn Repo,
symbol_resolver: &dyn SymbolResolver,
) -> Result<ResolvedExpression, RevsetResolutionError> {
resolve_symbols(repo, self, symbol_resolver)
.map(|expression| resolve_visibility(repo, &expression))
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ResolvedPredicateExpression {
/// Pure filter predicate.
Filter(RevsetFilterPredicate),
/// Set expression to be evaluated as filter. This is typically a subtree
/// node of `Union` with a pure filter predicate.
Set(Box<ResolvedExpression>),
NotIn(Box<ResolvedPredicateExpression>),
Union(
Box<ResolvedPredicateExpression>,
Box<ResolvedPredicateExpression>,
),
}
/// Describes evaluation plan of revset expression.
///
/// Unlike `RevsetExpression`, this doesn't contain unresolved symbols or `View`
/// properties.
///
/// Use `RevsetExpression` API to build a query programmatically.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ResolvedExpression {
Commits(Vec<CommitId>),
Ancestors {
heads: Box<ResolvedExpression>,
generation: Range<u64>,
},
/// Commits that are ancestors of `heads` but not ancestors of `roots`.
Range {
roots: Box<ResolvedExpression>,
heads: Box<ResolvedExpression>,
generation: Range<u64>,
},
/// Commits that are descendants of `roots` and ancestors of `heads`.
DagRange {
roots: Box<ResolvedExpression>,
heads: Box<ResolvedExpression>,
generation_from_roots: Range<u64>,
},
Heads(Box<ResolvedExpression>),
Roots(Box<ResolvedExpression>),
Latest {
candidates: Box<ResolvedExpression>,
count: usize,
},
Union(Box<ResolvedExpression>, Box<ResolvedExpression>),
/// Intersects `candidates` with `predicate` by filtering.
FilterWithin {
candidates: Box<ResolvedExpression>,
predicate: ResolvedPredicateExpression,
},
/// Intersects expressions by merging.
Intersection(Box<ResolvedExpression>, Box<ResolvedExpression>),
Difference(Box<ResolvedExpression>, Box<ResolvedExpression>),
}
impl ResolvedExpression {
pub fn evaluate<'index>(
&self,
repo: &'index dyn Repo,
) -> Result<Box<dyn Revset<'index> + 'index>, RevsetEvaluationError> {
repo.index().evaluate_revset(self, repo.store())
}
}
#[derive(Clone, Debug, Default)]
pub struct RevsetAliasesMap {
symbol_aliases: HashMap<String, String>,
function_aliases: HashMap<String, (Vec<String>, String)>,
}
impl RevsetAliasesMap {
pub fn new() -> Self {
Self::default()
}
/// Adds new substitution rule `decl = defn`.
///
/// Returns error if `decl` is invalid. The `defn` part isn't checked. A bad
/// `defn` will be reported when the alias is substituted.
pub fn insert(
&mut self,
decl: impl AsRef<str>,
defn: impl Into<String>,
) -> Result<(), RevsetParseError> {
match RevsetAliasDeclaration::parse(decl.as_ref())? {
RevsetAliasDeclaration::Symbol(name) => {
self.symbol_aliases.insert(name, defn.into());
}
RevsetAliasDeclaration::Function(name, params) => {
self.function_aliases.insert(name, (params, defn.into()));
}
}
Ok(())
}
fn get_symbol(&self, name: &str) -> Option<(RevsetAliasId, &str)> {
self.symbol_aliases
.get_key_value(name)
.map(|(name, defn)| (RevsetAliasId::Symbol(name), defn.as_ref()))
}
fn get_function(&self, name: &str) -> Option<(RevsetAliasId, &[String], &str)> {
self.function_aliases
.get_key_value(name)
.map(|(name, (params, defn))| {
(
RevsetAliasId::Function(name),
params.as_ref(),
defn.as_ref(),
)
})
}
}
/// Parsed declaration part of alias rule.
#[derive(Clone, Debug)]
enum RevsetAliasDeclaration {
Symbol(String),
Function(String, Vec<String>),
}
impl RevsetAliasDeclaration {
fn parse(source: &str) -> Result<Self, RevsetParseError> {
let mut pairs = RevsetParser::parse(Rule::alias_declaration, source)?;
let first = pairs.next().unwrap();
match first.as_rule() {
Rule::identifier => Ok(RevsetAliasDeclaration::Symbol(first.as_str().to_owned())),
Rule::function_name => {
let name = first.as_str().to_owned();
let params_pair = pairs.next().unwrap();
let params_span = params_pair.as_span();
let params = params_pair
.into_inner()
.map(|pair| match pair.as_rule() {
Rule::identifier => pair.as_str().to_owned(),
r => panic!("unexpected formal parameter rule {r:?}"),
})
.collect_vec();
if params.iter().all_unique() {
Ok(RevsetAliasDeclaration::Function(name, params))
} else {
Err(RevsetParseError::with_span(
RevsetParseErrorKind::RedefinedFunctionParameter,
params_span,
))
}
}
r => panic!("unexpected alias declaration rule {r:?}"),
}
}
}
/// Borrowed reference to identify alias expression.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum RevsetAliasId<'a> {
Symbol(&'a str),
Function(&'a str),
}
impl fmt::Display for RevsetAliasId<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
RevsetAliasId::Symbol(name) => write!(f, "{name}"),
RevsetAliasId::Function(name) => write!(f, "{name}()"),
}
}
}
#[derive(Clone, Copy, Debug)]
struct ParseState<'a> {
aliases_map: &'a RevsetAliasesMap,
aliases_expanding: &'a [RevsetAliasId<'a>],
locals: &'a HashMap<&'a str, Rc<RevsetExpression>>,
workspace_ctx: Option<&'a RevsetWorkspaceContext<'a>>,
}
impl ParseState<'_> {
fn with_alias_expanding<T>(
self,
id: RevsetAliasId<'_>,
locals: &HashMap<&str, Rc<RevsetExpression>>,
span: pest::Span<'_>,
f: impl FnOnce(ParseState<'_>) -> Result<T, RevsetParseError>,
) -> Result<T, RevsetParseError> {
// The stack should be short, so let's simply do linear search and duplicate.
if self.aliases_expanding.contains(&id) {
return Err(RevsetParseError::with_span(
RevsetParseErrorKind::RecursiveAlias(id.to_string()),
span,
));
}
let mut aliases_expanding = self.aliases_expanding.to_vec();
aliases_expanding.push(id);
let expanding_state = ParseState {
aliases_map: self.aliases_map,
aliases_expanding: &aliases_expanding,
locals,
workspace_ctx: self.workspace_ctx,
};
f(expanding_state).map_err(|e| {
RevsetParseError::with_span_and_origin(
RevsetParseErrorKind::BadAliasExpansion(id.to_string()),
span,
e,
)
})
}
}
fn parse_program(
revset_str: &str,
state: ParseState,
) -> Result<Rc<RevsetExpression>, RevsetParseError> {
let mut pairs = RevsetParser::parse(Rule::program, revset_str)?;
let first = pairs.next().unwrap();
parse_expression_rule(first.into_inner(), state)
}
fn parse_expression_rule(
pairs: Pairs<Rule>,
state: ParseState,
) -> Result<Rc<RevsetExpression>, RevsetParseError> {
fn not_postfix_op(
op: &Pair<Rule>,
similar_op: impl Into<String>,
description: impl Into<String>,
) -> RevsetParseError {
RevsetParseError::with_span(
RevsetParseErrorKind::NotPostfixOperator {
op: op.as_str().to_owned(),
similar_op: similar_op.into(),
description: description.into(),
},
op.as_span(),
)
}
fn not_infix_op(
op: &Pair<Rule>,
similar_op: impl Into<String>,
description: impl Into<String>,
) -> RevsetParseError {
RevsetParseError::with_span(
RevsetParseErrorKind::NotInfixOperator {
op: op.as_str().to_owned(),
similar_op: similar_op.into(),
description: description.into(),
},
op.as_span(),
)
}
static PRATT: Lazy<PrattParser<Rule>> = Lazy::new(|| {
PrattParser::new()
.op(Op::infix(Rule::union_op, Assoc::Left)
| Op::infix(Rule::compat_add_op, Assoc::Left))
.op(Op::infix(Rule::intersection_op, Assoc::Left)
| Op::infix(Rule::difference_op, Assoc::Left)
| Op::infix(Rule::compat_sub_op, Assoc::Left))
.op(Op::prefix(Rule::negate_op))
// Ranges can't be nested without parentheses. Associativity doesn't matter.
.op(Op::infix(Rule::dag_range_op, Assoc::Left) | Op::infix(Rule::range_op, Assoc::Left))
.op(Op::prefix(Rule::dag_range_pre_op) | Op::prefix(Rule::range_pre_op))
.op(Op::postfix(Rule::dag_range_post_op) | Op::postfix(Rule::range_post_op))
// Neighbors
.op(Op::postfix(Rule::parents_op)
| Op::postfix(Rule::children_op)
| Op::postfix(Rule::compat_parents_op))
});
PRATT
.map_primary(|primary| parse_primary_rule(primary, state))
.map_prefix(|op, rhs| match op.as_rule() {
Rule::negate_op => Ok(rhs?.negated()),
Rule::dag_range_pre_op | Rule::range_pre_op => Ok(rhs?.ancestors()),
r => panic!("unexpected prefix operator rule {r:?}"),
})
.map_postfix(|lhs, op| match op.as_rule() {
Rule::dag_range_post_op => Ok(lhs?.descendants()),
Rule::range_post_op => Ok(lhs?.range(&RevsetExpression::visible_heads())),
Rule::parents_op => Ok(lhs?.parents()),
Rule::children_op => Ok(lhs?.children()),
Rule::compat_parents_op => Err(not_postfix_op(&op, "-", "parents")),
r => panic!("unexpected postfix operator rule {r:?}"),
})
.map_infix(|lhs, op, rhs| match op.as_rule() {
Rule::union_op => Ok(lhs?.union(&rhs?)),
Rule::compat_add_op => Err(not_infix_op(&op, "|", "union")),
Rule::intersection_op => Ok(lhs?.intersection(&rhs?)),
Rule::difference_op => Ok(lhs?.minus(&rhs?)),
Rule::compat_sub_op => Err(not_infix_op(&op, "~", "difference")),
Rule::dag_range_op => Ok(lhs?.dag_range_to(&rhs?)),
Rule::range_op => Ok(lhs?.range(&rhs?)),
r => panic!("unexpected infix operator rule {r:?}"),
})
.parse(pairs)
}
fn parse_primary_rule(
pair: Pair<Rule>,
state: ParseState,
) -> Result<Rc<RevsetExpression>, RevsetParseError> {
let span = pair.as_span();
let mut pairs = pair.into_inner();
let first = pairs.next().unwrap();
match first.as_rule() {
Rule::expression => parse_expression_rule(first.into_inner(), state),
Rule::function_name => {
let arguments_pair = pairs.next().unwrap();
parse_function_expression(first, arguments_pair, state, span)
}
Rule::symbol => parse_symbol_rule(first.into_inner(), state),
_ => {
panic!("unexpected revset parse rule: {:?}", first.as_str());
}
}
}
fn parse_symbol_rule(
mut pairs: Pairs<Rule>,
state: ParseState,
) -> Result<Rc<RevsetExpression>, RevsetParseError> {
let first = pairs.next().unwrap();
match first.as_rule() {
Rule::identifier => {
let name = first.as_str();
if let Some(expr) = state.locals.get(name) {
Ok(expr.clone())
} else if let Some((id, defn)) = state.aliases_map.get_symbol(name) {
let locals = HashMap::new(); // Don't spill out the current scope
state.with_alias_expanding(id, &locals, first.as_span(), |state| {
parse_program(defn, state)
})
} else {
Ok(RevsetExpression::symbol(name.to_owned()))
}
}
Rule::literal_string => {
return Ok(RevsetExpression::symbol(
first
.as_str()
.strip_prefix('"')
.unwrap()
.strip_suffix('"')
.unwrap()
.to_owned(),
));
}
_ => {
panic!("unexpected symbol parse rule: {:?}", first.as_str());
}
}
}
fn parse_function_expression(
name_pair: Pair<Rule>,
arguments_pair: Pair<Rule>,
state: ParseState,
primary_span: pest::Span<'_>,
) -> Result<Rc<RevsetExpression>, RevsetParseError> {
let name = name_pair.as_str();
if let Some((id, params, defn)) = state.aliases_map.get_function(name) {
// Resolve arguments in the current scope, and pass them in to the alias
// expansion scope.
let (required, optional) =
expect_named_arguments_vec(name, &[], arguments_pair, params.len(), params.len())?;
assert!(optional.is_empty());
let args: Vec<_> = required
.into_iter()
.map(|arg| parse_expression_rule(arg.into_inner(), state))
.try_collect()?;
let locals = params.iter().map(|s| s.as_str()).zip(args).collect();
state.with_alias_expanding(id, &locals, primary_span, |state| {
parse_program(defn, state)
})
} else if let Some(func) = BUILTIN_FUNCTION_MAP.get(name) {
func(name, arguments_pair, state)
} else {
Err(RevsetParseError::with_span(
RevsetParseErrorKind::NoSuchFunction {
name: name.to_owned(),
candidates: collect_similar(name, &collect_function_names(state.aliases_map)),
},
name_pair.as_span(),
))
}
}
fn collect_function_names(aliases_map: &RevsetAliasesMap) -> Vec<String> {
let mut names = BUILTIN_FUNCTION_MAP
.keys()
.map(|&n| n.to_owned())
.collect_vec();
names.extend(aliases_map.function_aliases.keys().map(|n| n.to_owned()));
names.sort_unstable();
names.dedup();
names
}
fn collect_similar(name: &str, candidates: &[impl AsRef<str>]) -> Vec<String> {
candidates
.iter()
.filter_map(|cand| {
// The parameter is borrowed from clap f5540d26
(strsim::jaro(name, cand.as_ref()) > 0.7).then_some(cand)
})
.map(|s| s.as_ref().to_owned())
.collect_vec()
}
type RevsetFunction =
fn(&str, Pair<Rule>, ParseState) -> Result<Rc<RevsetExpression>, RevsetParseError>;
static BUILTIN_FUNCTION_MAP: Lazy<HashMap<&'static str, RevsetFunction>> = Lazy::new(|| {
// Not using maplit::hashmap!{} or custom declarative macro here because
// code completion inside macro is quite restricted.
let mut map: HashMap<&'static str, RevsetFunction> = HashMap::new();
map.insert("parents", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let expression = parse_expression_rule(arg.into_inner(), state)?;
Ok(expression.parents())
});
map.insert("children", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let expression = parse_expression_rule(arg.into_inner(), state)?;
Ok(expression.children())
});
map.insert("ancestors", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let expression = parse_expression_rule(arg.into_inner(), state)?;
Ok(expression.ancestors())
});
map.insert("descendants", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let expression = parse_expression_rule(arg.into_inner(), state)?;
Ok(expression.descendants())
});
map.insert("connected", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let candidates = parse_expression_rule(arg.into_inner(), state)?;
Ok(candidates.connected())
});
map.insert("none", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::none())
});
map.insert("all", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::all())
});
map.insert("heads", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let candidates = parse_expression_rule(arg.into_inner(), state)?;
Ok(candidates.heads())
});
map.insert("roots", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let candidates = parse_expression_rule(arg.into_inner(), state)?;
Ok(candidates.roots())
});
map.insert("visible_heads", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::visible_heads())
});
map.insert("branches", |name, arguments_pair, state| {
let ([], [opt_arg]) = expect_arguments(name, arguments_pair)?;
let needle = if let Some(arg) = opt_arg {
parse_function_argument_to_string(name, arg, state)?
} else {
"".to_owned()
};
Ok(RevsetExpression::branches(needle))
});
map.insert("remote_branches", |name, arguments_pair, state| {
let ([], [branch_opt_arg, remote_opt_arg]) =
expect_named_arguments(name, &["", "remote"], arguments_pair)?;
let branch_needle = if let Some(branch_arg) = branch_opt_arg {
parse_function_argument_to_string(name, branch_arg, state)?
} else {
"".to_owned()
};
let remote_needle = if let Some(remote_arg) = remote_opt_arg {
parse_function_argument_to_string(name, remote_arg, state)?
} else {
"".to_owned()
};
Ok(RevsetExpression::remote_branches(
branch_needle,
remote_needle,
))
});
map.insert("tags", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::tags())
});
map.insert("git_refs", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::git_refs())
});
map.insert("git_head", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::git_head())
});
map.insert("latest", |name, arguments_pair, state| {
let ([candidates_arg], [count_opt_arg]) = expect_arguments(name, arguments_pair)?;
let candidates = parse_expression_rule(candidates_arg.into_inner(), state)?;
let count = if let Some(count_arg) = count_opt_arg {
parse_function_argument_as_literal("integer", name, count_arg, state)?
} else {
1
};
Ok(candidates.latest(count))
});
map.insert("merges", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::filter(
RevsetFilterPredicate::ParentCount(2..u32::MAX),
))
});
map.insert("description", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let needle = parse_function_argument_to_string(name, arg, state)?;
Ok(RevsetExpression::filter(
RevsetFilterPredicate::Description(needle),
))
});
map.insert("author", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let needle = parse_function_argument_to_string(name, arg, state)?;
Ok(RevsetExpression::filter(RevsetFilterPredicate::Author(
needle,
)))
});
map.insert("committer", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let needle = parse_function_argument_to_string(name, arg, state)?;
Ok(RevsetExpression::filter(RevsetFilterPredicate::Committer(
needle,
)))
});
map.insert("empty", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::filter(RevsetFilterPredicate::File(None)).negated())
});
map.insert("file", |name, arguments_pair, state| {
if let Some(ctx) = state.workspace_ctx {
let arguments_span = arguments_pair.as_span();
let paths: Vec<_> = arguments_pair
.into_inner()
.map(|arg| -> Result<_, RevsetParseError> {
let span = arg.as_span();
let needle = parse_function_argument_to_string(name, arg, state)?;
let path = RepoPath::parse_fs_path(ctx.cwd, ctx.workspace_root, &needle)
.map_err(|e| {
RevsetParseError::with_span(
RevsetParseErrorKind::FsPathParseError(e),
span,
)
})?;
Ok(path)
})
.try_collect()?;
if paths.is_empty() {
Err(RevsetParseError::with_span(
RevsetParseErrorKind::InvalidFunctionArguments {
name: name.to_owned(),
message: "Expected at least 1 argument".to_string(),
},
arguments_span,
))
} else {
Ok(RevsetExpression::filter(RevsetFilterPredicate::File(Some(
paths,
))))
}
} else {
Err(RevsetParseError::new(
RevsetParseErrorKind::FsPathWithoutWorkspace,
))
}
});
map.insert("conflict", |name, arguments_pair, _state| {
expect_no_arguments(name, arguments_pair)?;
Ok(RevsetExpression::filter(RevsetFilterPredicate::HasConflict))
});
map.insert("present", |name, arguments_pair, state| {
let arg = expect_one_argument(name, arguments_pair)?;
let expression = parse_expression_rule(arg.into_inner(), state)?;
Ok(Rc::new(RevsetExpression::Present(expression)))
});
map
});
type OptionalArg<'i> = Option<Pair<'i, Rule>>;
fn expect_no_arguments(
function_name: &str,
arguments_pair: Pair<Rule>,
) -> Result<(), RevsetParseError> {
let ([], []) = expect_arguments(function_name, arguments_pair)?;
Ok(())
}
fn expect_one_argument<'i>(
function_name: &str,
arguments_pair: Pair<'i, Rule>,
) -> Result<Pair<'i, Rule>, RevsetParseError> {
let ([arg], []) = expect_arguments(function_name, arguments_pair)?;
Ok(arg)
}
fn expect_arguments<'i, const N: usize, const M: usize>(
function_name: &str,
arguments_pair: Pair<'i, Rule>,
) -> Result<([Pair<'i, Rule>; N], [OptionalArg<'i>; M]), RevsetParseError> {
expect_named_arguments(function_name, &[], arguments_pair)
}
/// Extracts N required arguments and M optional arguments.
///
/// `argument_names` is a list of argument names. Unnamed positional arguments
/// should be padded with `""`.
fn expect_named_arguments<'i, const N: usize, const M: usize>(
function_name: &str,
argument_names: &[&str],
arguments_pair: Pair<'i, Rule>,
) -> Result<([Pair<'i, Rule>; N], [OptionalArg<'i>; M]), RevsetParseError> {
let (required, optional) =
expect_named_arguments_vec(function_name, argument_names, arguments_pair, N, N + M)?;
Ok((required.try_into().unwrap(), optional.try_into().unwrap()))
}
fn expect_named_arguments_vec<'i>(
function_name: &str,
argument_names: &[&str],
arguments_pair: Pair<'i, Rule>,
min_arg_count: usize,
max_arg_count: usize,
) -> Result<(Vec<Pair<'i, Rule>>, Vec<OptionalArg<'i>>), RevsetParseError> {
assert!(argument_names.len() <= max_arg_count);
let arguments_span = arguments_pair.as_span();
let make_error = |message, span| {
RevsetParseError::with_span(
RevsetParseErrorKind::InvalidFunctionArguments {
name: function_name.to_owned(),
message,
},
span,
)
};
let make_count_error = || {
let message = if min_arg_count == max_arg_count {
format!("Expected {min_arg_count} arguments")
} else {
format!("Expected {min_arg_count} to {max_arg_count} arguments")
};
make_error(message, arguments_span)
};
let mut pos_iter = Some(0..max_arg_count);
let mut extracted_pairs = vec![None; max_arg_count];
for pair in arguments_pair.into_inner() {
let span = pair.as_span();
match pair.as_rule() {
Rule::expression => {
let pos = pos_iter
.as_mut()
.ok_or_else(|| {
make_error(
"Positional argument follows keyword argument".to_owned(),
span,
)
})?
.next()
.ok_or_else(make_count_error)?;
assert!(extracted_pairs[pos].is_none());
extracted_pairs[pos] = Some(pair);
}
Rule::keyword_argument => {
pos_iter = None; // No more positional arguments
let mut pairs = pair.into_inner();
let name = pairs.next().unwrap();
let expr = pairs.next().unwrap();
assert_eq!(name.as_rule(), Rule::identifier);
assert_eq!(expr.as_rule(), Rule::expression);
let pos = argument_names
.iter()
.position(|&n| n == name.as_str())
.ok_or_else(|| {
make_error(
format!(r#"Unexpected keyword argument "{}""#, name.as_str()),
span,
)
})?;
if extracted_pairs[pos].is_some() {
return Err(make_error(
format!(r#"Got multiple values for keyword "{}""#, name.as_str()),
span,
));
}
extracted_pairs[pos] = Some(expr);
}
r => panic!("unexpected argument rule {r:?}"),
}
}
assert_eq!(extracted_pairs.len(), max_arg_count);
let optional = extracted_pairs.split_off(min_arg_count);
let required = extracted_pairs.into_iter().flatten().collect_vec();
if required.len() != min_arg_count {
return Err(make_count_error());
}
Ok((required, optional))
}
fn parse_function_argument_to_string(
name: &str,
pair: Pair<Rule>,
state: ParseState,
) -> Result<String, RevsetParseError> {
parse_function_argument_as_literal("string", name, pair, state)
}
fn parse_function_argument_as_literal<T: FromStr>(
type_name: &str,
name: &str,
pair: Pair<Rule>,
state: ParseState,
) -> Result<T, RevsetParseError> {
let span = pair.as_span();
let make_error = || {
RevsetParseError::with_span(
RevsetParseErrorKind::InvalidFunctionArguments {
name: name.to_string(),
message: format!("Expected function argument of type {type_name}"),
},
span,
)
};
let expression = parse_expression_rule(pair.into_inner(), state)?;
match expression.as_ref() {
RevsetExpression::CommitRef(RevsetCommitRef::Symbol(symbol)) => {
symbol.parse().map_err(|_| make_error())
}
_ => Err(make_error()),
}
}
pub fn parse(
revset_str: &str,
aliases_map: &RevsetAliasesMap,
workspace_ctx: Option<&RevsetWorkspaceContext>,
) -> Result<Rc<RevsetExpression>, RevsetParseError> {
let state = ParseState {
aliases_map,
aliases_expanding: &[],
locals: &HashMap::new(),
workspace_ctx,
};
parse_program(revset_str, state)
}
/// `Some` for rewritten expression, or `None` to reuse the original expression.
type TransformedExpression = Option<Rc<RevsetExpression>>;
/// Walks `expression` tree and applies `f` recursively from leaf nodes.
fn transform_expression_bottom_up(
expression: &Rc<RevsetExpression>,
mut f: impl FnMut(&Rc<RevsetExpression>) -> TransformedExpression,
) -> TransformedExpression {
try_transform_expression::<Infallible>(expression, |_| Ok(None), |expression| Ok(f(expression)))
.unwrap()
}
/// Walks `expression` tree and applies transformation recursively.
///
/// `pre` is the callback to rewrite subtree including children. It is
/// invoked before visiting the child nodes. If returned `Some`, children
/// won't be visited.
///
/// `post` is the callback to rewrite from leaf nodes. If returned `None`,
/// the original expression node will be reused.
///
/// If no nodes rewritten, this function returns `None`.
/// `std::iter::successors()` could be used if the transformation needs to be
/// applied repeatedly until converged.
fn try_transform_expression<E>(
expression: &Rc<RevsetExpression>,
mut pre: impl FnMut(&Rc<RevsetExpression>) -> Result<TransformedExpression, E>,
mut post: impl FnMut(&Rc<RevsetExpression>) -> Result<TransformedExpression, E>,
) -> Result<TransformedExpression, E> {
fn transform_child_rec<E>(
expression: &Rc<RevsetExpression>,
pre: &mut impl FnMut(&Rc<RevsetExpression>) -> Result<TransformedExpression, E>,
post: &mut impl FnMut(&Rc<RevsetExpression>) -> Result<TransformedExpression, E>,
) -> Result<TransformedExpression, E> {
Ok(match expression.as_ref() {
RevsetExpression::None => None,
RevsetExpression::All => None,
RevsetExpression::Commits(_) => None,
RevsetExpression::CommitRef(_) => None,
RevsetExpression::Ancestors { heads, generation } => transform_rec(heads, pre, post)?
.map(|heads| RevsetExpression::Ancestors {
heads,
generation: generation.clone(),
}),
RevsetExpression::Descendants { roots, generation } => transform_rec(roots, pre, post)?
.map(|roots| RevsetExpression::Descendants {
roots,
generation: generation.clone(),
}),
RevsetExpression::Range {
roots,
heads,
generation,
} => transform_rec_pair((roots, heads), pre, post)?.map(|(roots, heads)| {
RevsetExpression::Range {
roots,
heads,
generation: generation.clone(),
}
}),
RevsetExpression::DagRange { roots, heads } => {
transform_rec_pair((roots, heads), pre, post)?
.map(|(roots, heads)| RevsetExpression::DagRange { roots, heads })
}
RevsetExpression::Heads(candidates) => {
transform_rec(candidates, pre, post)?.map(RevsetExpression::Heads)
}
RevsetExpression::Roots(candidates) => {
transform_rec(candidates, pre, post)?.map(RevsetExpression::Roots)
}
RevsetExpression::Latest { candidates, count } => transform_rec(candidates, pre, post)?
.map(|candidates| RevsetExpression::Latest {
candidates,
count: *count,
}),
RevsetExpression::Filter(_) => None,
RevsetExpression::AsFilter(candidates) => {
transform_rec(candidates, pre, post)?.map(RevsetExpression::AsFilter)
}
RevsetExpression::Present(candidates) => {
transform_rec(candidates, pre, post)?.map(RevsetExpression::Present)
}
RevsetExpression::NotIn(complement) => {
transform_rec(complement, pre, post)?.map(RevsetExpression::NotIn)
}
RevsetExpression::Union(expression1, expression2) => {
transform_rec_pair((expression1, expression2), pre, post)?.map(
|(expression1, expression2)| RevsetExpression::Union(expression1, expression2),
)
}
RevsetExpression::Intersection(expression1, expression2) => {
transform_rec_pair((expression1, expression2), pre, post)?.map(
|(expression1, expression2)| {
RevsetExpression::Intersection(expression1, expression2)
},
)
}
RevsetExpression::Difference(expression1, expression2) => {
transform_rec_pair((expression1, expression2), pre, post)?.map(
|(expression1, expression2)| {
RevsetExpression::Difference(expression1, expression2)
},
)
}
}
.map(Rc::new))
}
#[allow(clippy::type_complexity)]
fn transform_rec_pair<E>(
(expression1, expression2): (&Rc<RevsetExpression>, &Rc<RevsetExpression>),
pre: &mut impl FnMut(&Rc<RevsetExpression>) -> Result<TransformedExpression, E>,
post: &mut impl FnMut(&Rc<RevsetExpression>) -> Result<TransformedExpression, E>,
) -> Result<Option<(Rc<RevsetExpression>, Rc<RevsetExpression>)>, E> {
match (
transform_rec(expression1, pre, post)?,
transform_rec(expression2, pre, post)?,
) {
(Some(new_expression1), Some(new_expression2)) => {
Ok(Some((new_expression1, new_expression2)))
}
(Some(new_expression1), None) => Ok(Some((new_expression1, expression2.clone()))),
(None, Some(new_expression2)) => Ok(Some((expression1.clone(), new_expression2))),
(None, None) => Ok(None),
}
}
fn transform_rec<E>(
expression: &Rc<RevsetExpression>,
pre: &mut impl FnMut(&Rc<RevsetExpression>) -> Result<TransformedExpression, E>,
post: &mut impl FnMut(&Rc<RevsetExpression>) -> Result<TransformedExpression, E>,
) -> Result<TransformedExpression, E> {
if let Some(new_expression) = pre(expression)? {
return Ok(Some(new_expression));
}
if let Some(new_expression) = transform_child_rec(expression, pre, post)? {
// must propagate new expression tree
Ok(Some(post(&new_expression)?.unwrap_or(new_expression)))
} else {
post(expression)
}
}
transform_rec(expression, &mut pre, &mut post)
}
/// Transforms filter expressions, by applying the following rules.
///
/// a. Moves as many sets to left of filter intersection as possible, to
/// minimize the filter inputs.
/// b. TODO: Rewrites set operations to and/or/not of predicates, to
/// help further optimization (e.g. combine `file(_)` matchers.)
/// c. Wraps union of filter and set (e.g. `author(_) | heads()`), to
/// ensure inner filter wouldn't need to evaluate all the input sets.
fn internalize_filter(expression: &Rc<RevsetExpression>) -> TransformedExpression {
fn is_filter(expression: &RevsetExpression) -> bool {
matches!(
expression,
RevsetExpression::Filter(_) | RevsetExpression::AsFilter(_)
)
}
fn is_filter_tree(expression: &RevsetExpression) -> bool {
is_filter(expression) || as_filter_intersection(expression).is_some()
}
// Extracts 'c & f' from intersect_down()-ed node.
fn as_filter_intersection(
expression: &RevsetExpression,
) -> Option<(&Rc<RevsetExpression>, &Rc<RevsetExpression>)> {
if let RevsetExpression::Intersection(expression1, expression2) = expression {
is_filter(expression2).then_some((expression1, expression2))
} else {
None
}
}
// Since both sides must have already been intersect_down()-ed, we don't need to
// apply the whole bottom-up pass to new intersection node. Instead, just push
// new 'c & (d & g)' down-left to '(c & d) & g' while either side is
// an intersection of filter node.
fn intersect_down(
expression1: &Rc<RevsetExpression>,
expression2: &Rc<RevsetExpression>,
) -> TransformedExpression {
let recurse = |e1, e2| intersect_down(e1, e2).unwrap_or_else(|| e1.intersection(e2));
match (expression1.as_ref(), expression2.as_ref()) {
// Don't reorder 'f1 & f2'
(_, e2) if is_filter(e2) => None,
// f1 & e2 -> e2 & f1
(e1, _) if is_filter(e1) => Some(expression2.intersection(expression1)),
(e1, e2) => match (as_filter_intersection(e1), as_filter_intersection(e2)) {
// e1 & (c2 & f2) -> (e1 & c2) & f2
// (c1 & f1) & (c2 & f2) -> ((c1 & f1) & c2) & f2 -> ((c1 & c2) & f1) & f2
(_, Some((c2, f2))) => Some(recurse(expression1, c2).intersection(f2)),
// (c1 & f1) & e2 -> (c1 & e2) & f1
// ((c1 & f1) & g1) & e2 -> ((c1 & f1) & e2) & g1 -> ((c1 & e2) & f1) & g1
(Some((c1, f1)), _) => Some(recurse(c1, expression2).intersection(f1)),
(None, None) => None,
},
}
}
// Bottom-up pass pulls up-right filter node from leaf '(c & f) & e' ->
// '(c & e) & f', so that an intersection of filter node can be found as
// a direct child of another intersection node. However, the rewritten
// intersection node 'c & e' can also be a rewrite target if 'e' contains
// a filter node. That's why intersect_down() is also recursive.
transform_expression_bottom_up(expression, |expression| match expression.as_ref() {
RevsetExpression::Present(e) => {
is_filter_tree(e).then(|| Rc::new(RevsetExpression::AsFilter(expression.clone())))
}
RevsetExpression::NotIn(e) => {
is_filter_tree(e).then(|| Rc::new(RevsetExpression::AsFilter(expression.clone())))
}
RevsetExpression::Union(e1, e2) => (is_filter_tree(e1) || is_filter_tree(e2))
.then(|| Rc::new(RevsetExpression::AsFilter(expression.clone()))),
RevsetExpression::Intersection(expression1, expression2) => {
intersect_down(expression1, expression2)
}
// Difference(e1, e2) should have been unfolded to Intersection(e1, NotIn(e2)).
_ => None,
})
}
/// Eliminates redundant nodes like `x & all()`, `~~x`.
///
/// This does not rewrite 'x & none()' to 'none()' because 'x' may be an invalid
/// symbol.
fn fold_redundant_expression(expression: &Rc<RevsetExpression>) -> TransformedExpression {
transform_expression_bottom_up(expression, |expression| match expression.as_ref() {
RevsetExpression::NotIn(outer) => match outer.as_ref() {
RevsetExpression::NotIn(inner) => Some(inner.clone()),
_ => None,
},
RevsetExpression::Intersection(expression1, expression2) => {
match (expression1.as_ref(), expression2.as_ref()) {
(_, RevsetExpression::All) => Some(expression1.clone()),
(RevsetExpression::All, _) => Some(expression2.clone()),
_ => None,
}
}
_ => None,
})
}
/// Transforms negative intersection to difference. Redundant intersections like
/// `all() & e` should have been removed.
fn fold_difference(expression: &Rc<RevsetExpression>) -> TransformedExpression {
fn to_difference(
expression: &Rc<RevsetExpression>,
complement: &Rc<RevsetExpression>,
) -> Rc<RevsetExpression> {
match (expression.as_ref(), complement.as_ref()) {
// :heads & ~(:roots) -> roots..heads
(
RevsetExpression::Ancestors { heads, generation },
RevsetExpression::Ancestors {
heads: roots,
generation: GENERATION_RANGE_FULL,
},
) => Rc::new(RevsetExpression::Range {
roots: roots.clone(),
heads: heads.clone(),
generation: generation.clone(),
}),
_ => expression.minus(complement),
}
}
transform_expression_bottom_up(expression, |expression| match expression.as_ref() {
RevsetExpression::Intersection(expression1, expression2) => {
match (expression1.as_ref(), expression2.as_ref()) {
// For '~x & f', don't move filter node 'f' left
(_, RevsetExpression::Filter(_) | RevsetExpression::AsFilter(_)) => None,
(_, RevsetExpression::NotIn(complement)) => {
Some(to_difference(expression1, complement))
}
(RevsetExpression::NotIn(complement), _) => {
Some(to_difference(expression2, complement))
}
_ => None,
}
}
_ => None,
})
}
/// Transforms binary difference to more primitive negative intersection.
///
/// For example, `all() ~ e` will become `all() & ~e`, which can be simplified
/// further by `fold_redundant_expression()`.
fn unfold_difference(expression: &Rc<RevsetExpression>) -> TransformedExpression {
transform_expression_bottom_up(expression, |expression| match expression.as_ref() {
// roots..heads -> :heads & ~(:roots)
RevsetExpression::Range {
roots,
heads,
generation,
} => {
let heads_ancestors = Rc::new(RevsetExpression::Ancestors {
heads: heads.clone(),
generation: generation.clone(),
});
Some(heads_ancestors.intersection(&roots.ancestors().negated()))
}
RevsetExpression::Difference(expression1, expression2) => {
Some(expression1.intersection(&expression2.negated()))
}
_ => None,
})
}
/// Transforms nested `ancestors()`/`parents()`/`descendants()`/`children()`
/// like `h---`/`r+++`.
fn fold_generation(expression: &Rc<RevsetExpression>) -> TransformedExpression {
fn add_generation(generation1: &Range<u64>, generation2: &Range<u64>) -> Range<u64> {
// For any (g1, g2) in (generation1, generation2), g1 + g2.
if generation1.is_empty() || generation2.is_empty() {
GENERATION_RANGE_EMPTY
} else {
let start = u64::saturating_add(generation1.start, generation2.start);
let end = u64::saturating_add(generation1.end, generation2.end - 1);
start..end
}
}
transform_expression_bottom_up(expression, |expression| match expression.as_ref() {
RevsetExpression::Ancestors {
heads,
generation: generation1,
} => {
match heads.as_ref() {
// (h-)- -> ancestors(ancestors(h, 1), 1) -> ancestors(h, 2)
// :(h-) -> ancestors(ancestors(h, 1), ..) -> ancestors(h, 1..)
// (:h)- -> ancestors(ancestors(h, ..), 1) -> ancestors(h, 1..)
RevsetExpression::Ancestors {
heads,
generation: generation2,
} => Some(Rc::new(RevsetExpression::Ancestors {
heads: heads.clone(),
generation: add_generation(generation1, generation2),
})),
_ => None,
}
}
RevsetExpression::Descendants {
roots,
generation: generation1,
} => {
match roots.as_ref() {
// (r+)+ -> descendants(descendants(r, 1), 1) -> descendants(r, 2)
// (r+): -> descendants(descendants(r, 1), ..) -> descendants(r, 1..)
// (r:)+ -> descendants(descendants(r, ..), 1) -> descendants(r, 1..)
RevsetExpression::Descendants {
roots,
generation: generation2,
} => Some(Rc::new(RevsetExpression::Descendants {
roots: roots.clone(),
generation: add_generation(generation1, generation2),
})),
_ => None,
}
}
// Range should have been unfolded to intersection of Ancestors.
_ => None,
})
}
/// Rewrites the given `expression` tree to reduce evaluation cost. Returns new
/// tree.
pub fn optimize(expression: Rc<RevsetExpression>) -> Rc<RevsetExpression> {
let expression = unfold_difference(&expression).unwrap_or(expression);
let expression = fold_redundant_expression(&expression).unwrap_or(expression);
let expression = fold_generation(&expression).unwrap_or(expression);
let expression = internalize_filter(&expression).unwrap_or(expression);
fold_difference(&expression).unwrap_or(expression)
}
// TODO: find better place to host this function (or add compile-time revset
// parsing and resolution like
// `revset!("{unwanted}..{wanted}").evaluate(repo)`?)
pub fn walk_revs<'index>(
repo: &'index dyn Repo,
wanted: &[CommitId],
unwanted: &[CommitId],
) -> Result<Box<dyn Revset<'index> + 'index>, RevsetEvaluationError> {
RevsetExpression::commits(unwanted.to_vec())
.range(&RevsetExpression::commits(wanted.to_vec()))
.resolve(repo)
.unwrap()
.evaluate(repo)
}
fn resolve_git_ref(repo: &dyn Repo, symbol: &str) -> Option<Vec<CommitId>> {
let view = repo.view();
for git_ref_prefix in &["", "refs/", "refs/heads/", "refs/tags/", "refs/remotes/"] {
if let Some(ref_target) = view.git_refs().get(&(git_ref_prefix.to_string() + symbol)) {
return Some(ref_target.adds());
}
}
None
}
fn resolve_branch(repo: &dyn Repo, symbol: &str) -> Option<Vec<CommitId>> {
if let Some(branch_target) = repo.view().branches().get(symbol) {
return Some(
branch_target
.local_target
.as_ref()
.map(|target| target.adds())
.unwrap_or_default(),
);
}
if let Some((name, remote_name)) = symbol.split_once('@') {
if let Some(branch_target) = repo.view().branches().get(name) {
if let Some(target) = branch_target.remote_targets.get(remote_name) {
return Some(target.adds());
}
}
// A remote with name "git" will shadow local-git tracking branches
if remote_name == "git" {
if let Some(target) = get_git_tracking_branch(repo.view(), name) {
return Some(target.adds());
}
}
}
None
}
fn resolve_full_commit_id(
repo: &dyn Repo,
symbol: &str,
) -> Result<Option<Vec<CommitId>>, RevsetResolutionError> {
if let Ok(binary_commit_id) = hex::decode(symbol) {
if repo.store().commit_id_length() != binary_commit_id.len() {
return Ok(None);
}
let commit_id = CommitId::new(binary_commit_id);
match repo.store().get_commit(&commit_id) {
// Only recognize a commit if we have indexed it
Ok(_) if repo.index().has_id(&commit_id) => Ok(Some(vec![commit_id])),
Ok(_) | Err(BackendError::ObjectNotFound { .. }) => Ok(None),
Err(err) => Err(RevsetResolutionError::StoreError(err)),
}
} else {
Ok(None)
}
}
pub trait SymbolResolver {
fn resolve_symbol(&self, symbol: &str) -> Result<Vec<CommitId>, RevsetResolutionError>;
}
/// Fails on any attempt to resolve a symbol.
pub struct FailingSymbolResolver;
impl SymbolResolver for FailingSymbolResolver {
fn resolve_symbol(&self, symbol: &str) -> Result<Vec<CommitId>, RevsetResolutionError> {
Err(RevsetResolutionError::NoSuchRevision {
name: format!(
"Won't resolve symbol {symbol:?}. When creating revsets programmatically, avoid \
using RevsetExpression::symbol(); use RevsetExpression::commits() instead."
),
candidates: Default::default(),
})
}
}
pub type PrefixResolver<'a, T> = Box<dyn Fn(&dyn Repo, &HexPrefix) -> PrefixResolution<T> + 'a>;
/// Resolves the "root" and "@" symbols, branches, remote branches, tags, git
/// refs, and full and abbreviated commit and change ids.
pub struct DefaultSymbolResolver<'a> {
repo: &'a dyn Repo,
workspace_id: Option<&'a WorkspaceId>,
commit_id_resolver: PrefixResolver<'a, CommitId>,
change_id_resolver: PrefixResolver<'a, Vec<CommitId>>,
}
impl<'a> DefaultSymbolResolver<'a> {
pub fn new(repo: &'a dyn Repo, workspace_id: Option<&'a WorkspaceId>) -> Self {
DefaultSymbolResolver {
repo,
workspace_id,
commit_id_resolver: Box::new(|repo, prefix| repo.index().resolve_prefix(prefix)),
change_id_resolver: Box::new(|repo, prefix| repo.resolve_change_id_prefix(prefix)),
}
}
pub fn with_commit_id_resolver(
mut self,
commit_id_resolver: PrefixResolver<'a, CommitId>,
) -> Self {
self.commit_id_resolver = commit_id_resolver;
self
}
pub fn with_change_id_resolver(
mut self,
change_id_resolver: PrefixResolver<'a, Vec<CommitId>>,
) -> Self {
self.change_id_resolver = change_id_resolver;
self
}
}
impl SymbolResolver for DefaultSymbolResolver<'_> {
fn resolve_symbol(&self, symbol: &str) -> Result<Vec<CommitId>, RevsetResolutionError> {
if symbol.ends_with('@') {
let target_workspace = if symbol == "@" {
if let Some(workspace_id) = self.workspace_id {
workspace_id.clone()
} else {
return Err(RevsetResolutionError::NoSuchRevision {
name: symbol.to_owned(),
candidates: Default::default(),
});
}
} else {
WorkspaceId::new(symbol.strip_suffix('@').unwrap().to_string())
};
if let Some(commit_id) = self.repo.view().get_wc_commit_id(&target_workspace) {
Ok(vec![commit_id.clone()])
} else {
Err(RevsetResolutionError::NoSuchRevision {
name: symbol.to_owned(),
candidates: Default::default(),
})
}
} else if symbol == "root" {
Ok(vec![self.repo.store().root_commit_id().clone()])
} else if symbol.is_empty() {
Err(RevsetResolutionError::EmptyString)
} else {
// Try to resolve as a tag
if let Some(target) = self.repo.view().tags().get(symbol) {
return Ok(target.adds());
}
// Try to resolve as a branch
if let Some(ids) = resolve_branch(self.repo, symbol) {
return Ok(ids);
}
// Try to resolve as a git ref
if let Some(ids) = resolve_git_ref(self.repo, symbol) {
return Ok(ids);
}
// Try to resolve as a full commit id.
if let Some(ids) = resolve_full_commit_id(self.repo, symbol)? {
return Ok(ids);
}
// Try to resolve as a commit id.
if let Some(prefix) = HexPrefix::new(symbol) {
match (self.commit_id_resolver)(self.repo, &prefix) {
PrefixResolution::AmbiguousMatch => {
return Err(RevsetResolutionError::AmbiguousCommitIdPrefix(
symbol.to_owned(),
));
}
PrefixResolution::SingleMatch(id) => {
return Ok(vec![id]);
}
PrefixResolution::NoMatch => {
// Fall through
}
}
}
// Try to resolve as a change id.
if let Some(prefix) = to_forward_hex(symbol).as_deref().and_then(HexPrefix::new) {
match (self.change_id_resolver)(self.repo, &prefix) {
PrefixResolution::AmbiguousMatch => {
return Err(RevsetResolutionError::AmbiguousChangeIdPrefix(
symbol.to_owned(),
));
}
PrefixResolution::SingleMatch(ids) => {
return Ok(ids);
}
PrefixResolution::NoMatch => {
// Fall through
}
}
}
Err(RevsetResolutionError::NoSuchRevision {
name: symbol.to_owned(),
candidates: {
let branch_names = self.repo.view().branches().keys().collect_vec();
collect_similar(symbol, &branch_names)
},
})
}
}
}
fn resolve_commit_ref(
repo: &dyn Repo,
commit_ref: &RevsetCommitRef,
symbol_resolver: &dyn SymbolResolver,
) -> Result<Vec<CommitId>, RevsetResolutionError> {
match commit_ref {
RevsetCommitRef::Symbol(symbol) => symbol_resolver.resolve_symbol(symbol),
RevsetCommitRef::VisibleHeads => Ok(repo.view().heads().iter().cloned().collect_vec()),
RevsetCommitRef::Branches(needle) => {
let mut commit_ids = vec![];
for (branch_name, branch_target) in repo.view().branches() {
if !branch_name.contains(needle) {
continue;
}
if let Some(local_target) = &branch_target.local_target {
commit_ids.extend(local_target.adds());
}
}
Ok(commit_ids)
}
RevsetCommitRef::RemoteBranches {
branch_needle,
remote_needle,
} => {
let mut commit_ids = vec![];
for (branch_name, branch_target) in repo.view().branches() {
if !branch_name.contains(branch_needle) {
continue;
}
for (remote_name, remote_target) in branch_target.remote_targets.iter() {
if remote_name.contains(remote_needle) {
commit_ids.extend(remote_target.adds());
}
}
}
Ok(commit_ids)
}
RevsetCommitRef::Tags => {
let mut commit_ids = vec![];
for ref_target in repo.view().tags().values() {
commit_ids.extend(ref_target.adds());
}
Ok(commit_ids)
}
RevsetCommitRef::GitRefs => {
let mut commit_ids = vec![];
for ref_target in repo.view().git_refs().values() {
commit_ids.extend(ref_target.adds());
}
Ok(commit_ids)
}
RevsetCommitRef::GitHead => {
let mut commit_ids = vec![];
if let Some(ref_target) = repo.view().git_head() {
commit_ids.extend(ref_target.adds());
}
Ok(commit_ids)
}
}
}
fn resolve_symbols(
repo: &dyn Repo,
expression: Rc<RevsetExpression>,
symbol_resolver: &dyn SymbolResolver,
) -> Result<Rc<RevsetExpression>, RevsetResolutionError> {
Ok(try_transform_expression(
&expression,
|expression| match expression.as_ref() {
// 'present(x)' opens new symbol resolution scope to map error to 'none()'.
RevsetExpression::Present(candidates) => {
resolve_symbols(repo, candidates.clone(), symbol_resolver)
.or_else(|err| match err {
RevsetResolutionError::NoSuchRevision { .. } => {
Ok(RevsetExpression::none())
}
RevsetResolutionError::EmptyString
| RevsetResolutionError::AmbiguousCommitIdPrefix(_)
| RevsetResolutionError::AmbiguousChangeIdPrefix(_)
| RevsetResolutionError::StoreError(_) => Err(err),
})
.map(Some) // Always rewrite subtree
}
// Otherwise resolve symbols recursively.
_ => Ok(None),
},
|expression| match expression.as_ref() {
RevsetExpression::CommitRef(commit_ref) => {
let commit_ids = resolve_commit_ref(repo, commit_ref, symbol_resolver)?;
Ok(Some(RevsetExpression::commits(commit_ids)))
}
_ => Ok(None),
},
)?
.unwrap_or(expression))
}
/// Inserts implicit `all()` and `visible_heads()` nodes to the `expression`.
///
/// Symbols and commit refs in the `expression` should have been resolved.
///
/// This is a separate step because a symbol-resolved `expression` could be
/// transformed further to e.g. combine OR-ed `Commits(_)`, or to collect
/// commit ids to make `all()` include hidden-but-specified commits. The
/// return type `ResolvedExpression` is stricter than `RevsetExpression`,
/// and isn't designed for such transformation.
fn resolve_visibility(repo: &dyn Repo, expression: &RevsetExpression) -> ResolvedExpression {
// If we add "operation" scope (#1283), visible_heads might be translated to
// `RevsetExpression::WithinOperation(visible_heads, expression)` node to
// evaluate filter predicates and "all()" against that scope.
let context = VisibilityResolutionContext {
visible_heads: &repo.view().heads().iter().cloned().collect_vec(),
};
context.resolve(expression)
}
#[derive(Clone, Debug)]
struct VisibilityResolutionContext<'a> {
visible_heads: &'a [CommitId],
}
impl VisibilityResolutionContext<'_> {
/// Resolves expression tree as set.
fn resolve(&self, expression: &RevsetExpression) -> ResolvedExpression {
match expression {
RevsetExpression::None => ResolvedExpression::Commits(vec![]),
RevsetExpression::All => self.resolve_all(),
RevsetExpression::Commits(commit_ids) => {
ResolvedExpression::Commits(commit_ids.clone())
}
RevsetExpression::CommitRef(_) => {
panic!("Expression '{expression:?}' should have been resolved by caller");
}
RevsetExpression::Ancestors { heads, generation } => ResolvedExpression::Ancestors {
heads: self.resolve(heads).into(),
generation: generation.clone(),
},
RevsetExpression::Descendants { roots, generation } => ResolvedExpression::DagRange {
roots: self.resolve(roots).into(),
heads: self.resolve_visible_heads().into(),
generation_from_roots: generation.clone(),
},
RevsetExpression::Range {
roots,
heads,
generation,
} => ResolvedExpression::Range {
roots: self.resolve(roots).into(),
heads: self.resolve(heads).into(),
generation: generation.clone(),
},
RevsetExpression::DagRange { roots, heads } => ResolvedExpression::DagRange {
roots: self.resolve(roots).into(),
heads: self.resolve(heads).into(),
generation_from_roots: GENERATION_RANGE_FULL,
},
RevsetExpression::Heads(candidates) => {
ResolvedExpression::Heads(self.resolve(candidates).into())
}
RevsetExpression::Roots(candidates) => {
ResolvedExpression::Roots(self.resolve(candidates).into())
}
RevsetExpression::Latest { candidates, count } => ResolvedExpression::Latest {
candidates: self.resolve(candidates).into(),
count: *count,
},
RevsetExpression::Filter(_) | RevsetExpression::AsFilter(_) => {
// Top-level filter without intersection: e.g. "~author(_)" is represented as
// `AsFilter(NotIn(Filter(Author(_))))`.
ResolvedExpression::FilterWithin {
candidates: self.resolve_all().into(),
predicate: self.resolve_predicate(expression),
}
}
RevsetExpression::Present(_) => {
panic!("Expression '{expression:?}' should have been resolved by caller");
}
RevsetExpression::NotIn(complement) => ResolvedExpression::Difference(
self.resolve_all().into(),
self.resolve(complement).into(),
),
RevsetExpression::Union(expression1, expression2) => ResolvedExpression::Union(
self.resolve(expression1).into(),
self.resolve(expression2).into(),
),
RevsetExpression::Intersection(expression1, expression2) => {
match expression2.as_ref() {
RevsetExpression::Filter(_) | RevsetExpression::AsFilter(_) => {
ResolvedExpression::FilterWithin {
candidates: self.resolve(expression1).into(),
predicate: self.resolve_predicate(expression2),
}
}
_ => ResolvedExpression::Intersection(
self.resolve(expression1).into(),
self.resolve(expression2).into(),
),
}
}
RevsetExpression::Difference(expression1, expression2) => {
ResolvedExpression::Difference(
self.resolve(expression1).into(),
self.resolve(expression2).into(),
)
}
}
}
fn resolve_all(&self) -> ResolvedExpression {
// Since `all()` does not include hidden commits, some of the logical
// transformation rules may subtly change the evaluated set. For example,
// `all() & x` is not `x` if `x` is hidden. This wouldn't matter in practice,
// but if it does, the heads set could be extended to include the commits
// (and `remote_branches()`) specified in the revset expression. Alternatively,
// some optimization rules could be removed, but that means `author(_) & x`
// would have to test `:visible_heads() & x`.
ResolvedExpression::Ancestors {
heads: self.resolve_visible_heads().into(),
generation: GENERATION_RANGE_FULL,
}
}
fn resolve_visible_heads(&self) -> ResolvedExpression {
ResolvedExpression::Commits(self.visible_heads.to_owned())
}
/// Resolves expression tree as filter predicate.
///
/// For filter expression, this never inserts a hidden `all()` since a
/// filter predicate doesn't need to produce revisions to walk.
fn resolve_predicate(&self, expression: &RevsetExpression) -> ResolvedPredicateExpression {
match expression {
RevsetExpression::None
| RevsetExpression::All
| RevsetExpression::Commits(_)
| RevsetExpression::CommitRef(_)
| RevsetExpression::Ancestors { .. }
| RevsetExpression::Descendants { .. }
| RevsetExpression::Range { .. }
| RevsetExpression::DagRange { .. }
| RevsetExpression::Heads(_)
| RevsetExpression::Roots(_)
| RevsetExpression::Latest { .. } => {
ResolvedPredicateExpression::Set(self.resolve(expression).into())
}
RevsetExpression::Filter(predicate) => {
ResolvedPredicateExpression::Filter(predicate.clone())
}
RevsetExpression::AsFilter(candidates) => self.resolve_predicate(candidates),
RevsetExpression::Present(_) => {
panic!("Expression '{expression:?}' should have been resolved by caller")
}
RevsetExpression::NotIn(complement) => {
ResolvedPredicateExpression::NotIn(self.resolve_predicate(complement).into())
}
RevsetExpression::Union(expression1, expression2) => {
let predicate1 = self.resolve_predicate(expression1);
let predicate2 = self.resolve_predicate(expression2);
ResolvedPredicateExpression::Union(predicate1.into(), predicate2.into())
}
// Intersection of filters should have been substituted by optimize().
// If it weren't, just fall back to the set evaluation path.
RevsetExpression::Intersection(..) | RevsetExpression::Difference(..) => {
ResolvedPredicateExpression::Set(self.resolve(expression).into())
}
}
}
}
pub trait Revset<'index>: fmt::Debug {
/// Iterate in topological order with children before parents.
fn iter(&self) -> Box<dyn Iterator<Item = CommitId> + '_>;
/// Iterates commit/change id pairs in topological order.
fn commit_change_ids(&self) -> Box<dyn Iterator<Item = (CommitId, ChangeId)> + '_>;
fn iter_graph(&self) -> Box<dyn Iterator<Item = (CommitId, Vec<RevsetGraphEdge>)> + '_>;
fn change_id_index(&self) -> Box<dyn ChangeIdIndex + 'index>;
fn is_empty(&self) -> bool;
fn count(&self) -> usize;
}
pub trait ChangeIdIndex: Send + Sync {
/// Resolve an unambiguous change ID prefix to the commit IDs in the revset.
fn resolve_prefix(&self, prefix: &HexPrefix) -> PrefixResolution<Vec<CommitId>>;
/// This function returns the shortest length of a prefix of `key` that
/// disambiguates it from every other key in the index.
///
/// The length to be returned is a number of hexadecimal digits.
///
/// This has some properties that we do not currently make much use of:
///
/// - The algorithm works even if `key` itself is not in the index.
///
/// - In the special case when there are keys in the trie for which our
/// `key` is an exact prefix, returns `key.len() + 1`. Conceptually, in
/// order to disambiguate, you need every letter of the key *and* the
/// additional fact that it's the entire key). This case is extremely
/// unlikely for hashes with 12+ hexadecimal characters.
fn shortest_unique_prefix_len(&self, change_id: &ChangeId) -> usize;
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub struct RevsetGraphEdge {
pub target: CommitId,
pub edge_type: RevsetGraphEdgeType,
}
impl RevsetGraphEdge {
pub fn missing(target: CommitId) -> Self {
Self {
target,
edge_type: RevsetGraphEdgeType::Missing,
}
}
pub fn direct(target: CommitId) -> Self {
Self {
target,
edge_type: RevsetGraphEdgeType::Direct,
}
}
pub fn indirect(target: CommitId) -> Self {
Self {
target,
edge_type: RevsetGraphEdgeType::Indirect,
}
}
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub enum RevsetGraphEdgeType {
Missing,
Direct,
Indirect,
}
pub trait RevsetIteratorExt<'index, I> {
fn commits(self, store: &Arc<Store>) -> RevsetCommitIterator<I>;
fn reversed(self) -> ReverseRevsetIterator;
}
impl<'index, I: Iterator<Item = CommitId>> RevsetIteratorExt<'index, I> for I {
fn commits(self, store: &Arc<Store>) -> RevsetCommitIterator<I> {
RevsetCommitIterator {
iter: self,
store: store.clone(),
}
}
fn reversed(self) -> ReverseRevsetIterator {
ReverseRevsetIterator {
entries: self.into_iter().collect_vec(),
}
}
}
pub struct RevsetCommitIterator<I> {
store: Arc<Store>,
iter: I,
}
impl<I: Iterator<Item = CommitId>> Iterator for RevsetCommitIterator<I> {
type Item = BackendResult<Commit>;
fn next(&mut self) -> Option<Self::Item> {
self.iter
.next()
.map(|commit_id| self.store.get_commit(&commit_id))
}
}
pub struct ReverseRevsetIterator {
entries: Vec<CommitId>,
}
impl Iterator for ReverseRevsetIterator {
type Item = CommitId;
fn next(&mut self) -> Option<Self::Item> {
self.entries.pop()
}
}
/// Workspace information needed to evaluate revset expression.
#[derive(Clone, Debug)]
pub struct RevsetWorkspaceContext<'a> {
pub cwd: &'a Path,
pub workspace_id: &'a WorkspaceId,
pub workspace_root: &'a Path,
}
pub struct ReverseRevsetGraphIterator {
items: Vec<(CommitId, Vec<RevsetGraphEdge>)>,
}
impl ReverseRevsetGraphIterator {
pub fn new<'revset>(
input: Box<dyn Iterator<Item = (CommitId, Vec<RevsetGraphEdge>)> + 'revset>,
) -> Self {
let mut entries = vec![];
let mut reverse_edges: HashMap<CommitId, Vec<RevsetGraphEdge>> = HashMap::new();
for (commit_id, edges) in input {
for RevsetGraphEdge { target, edge_type } in edges {
reverse_edges
.entry(target)
.or_default()
.push(RevsetGraphEdge {
target: commit_id.clone(),
edge_type,
})
}
entries.push(commit_id);
}
let mut items = vec![];
for commit_id in entries.into_iter() {
let edges = reverse_edges.get(&commit_id).cloned().unwrap_or_default();
items.push((commit_id, edges));
}
Self { items }
}
}
impl Iterator for ReverseRevsetGraphIterator {
type Item = (CommitId, Vec<RevsetGraphEdge>);
fn next(&mut self) -> Option<Self::Item> {
self.items.pop()
}
}
#[cfg(test)]
mod tests {
use super::*;
fn parse(revset_str: &str) -> Result<Rc<RevsetExpression>, RevsetParseErrorKind> {
parse_with_aliases(revset_str, [] as [(&str, &str); 0])
}
fn parse_with_aliases(
revset_str: &str,
aliases: impl IntoIterator<Item = (impl AsRef<str>, impl Into<String>)>,
) -> Result<Rc<RevsetExpression>, RevsetParseErrorKind> {
let mut aliases_map = RevsetAliasesMap::new();
for (decl, defn) in aliases {
aliases_map.insert(decl, defn).unwrap();
}
// Set up pseudo context to resolve file(path)
let workspace_ctx = RevsetWorkspaceContext {
cwd: Path::new("/"),
workspace_id: &WorkspaceId::default(),
workspace_root: Path::new("/"),
};
// Map error to comparable object
super::parse(revset_str, &aliases_map, Some(&workspace_ctx)).map_err(|e| e.kind)
}
#[test]
fn test_revset_expression_building() {
let wc_symbol = RevsetExpression::symbol("@".to_string());
let foo_symbol = RevsetExpression::symbol("foo".to_string());
assert_eq!(
wc_symbol,
Rc::new(RevsetExpression::CommitRef(RevsetCommitRef::Symbol(
"@".to_string()
))),
);
assert_eq!(
wc_symbol.heads(),
Rc::new(RevsetExpression::Heads(wc_symbol.clone()))
);
assert_eq!(
wc_symbol.roots(),
Rc::new(RevsetExpression::Roots(wc_symbol.clone()))
);
assert_eq!(
wc_symbol.parents(),
Rc::new(RevsetExpression::Ancestors {
heads: wc_symbol.clone(),
generation: 1..2,
})
);
assert_eq!(
wc_symbol.ancestors(),
Rc::new(RevsetExpression::Ancestors {
heads: wc_symbol.clone(),
generation: GENERATION_RANGE_FULL,
})
);
assert_eq!(
foo_symbol.children(),
Rc::new(RevsetExpression::Descendants {
roots: foo_symbol.clone(),
generation: 1..2
}),
);
assert_eq!(
foo_symbol.descendants(),
Rc::new(RevsetExpression::Descendants {
roots: foo_symbol.clone(),
generation: GENERATION_RANGE_FULL,
})
);
assert_eq!(
foo_symbol.dag_range_to(&wc_symbol),
Rc::new(RevsetExpression::DagRange {
roots: foo_symbol.clone(),
heads: wc_symbol.clone(),
})
);
assert_eq!(
foo_symbol.connected(),
Rc::new(RevsetExpression::DagRange {
roots: foo_symbol.clone(),
heads: foo_symbol.clone(),
})
);
assert_eq!(
foo_symbol.range(&wc_symbol),
Rc::new(RevsetExpression::Range {
roots: foo_symbol.clone(),
heads: wc_symbol.clone(),
generation: GENERATION_RANGE_FULL,
})
);
assert_eq!(
foo_symbol.negated(),
Rc::new(RevsetExpression::NotIn(foo_symbol.clone()))
);
assert_eq!(
foo_symbol.union(&wc_symbol),
Rc::new(RevsetExpression::Union(
foo_symbol.clone(),
wc_symbol.clone()
))
);
assert_eq!(
foo_symbol.intersection(&wc_symbol),
Rc::new(RevsetExpression::Intersection(
foo_symbol.clone(),
wc_symbol.clone()
))
);
assert_eq!(
foo_symbol.minus(&wc_symbol),
Rc::new(RevsetExpression::Difference(foo_symbol, wc_symbol.clone()))
);
}
#[test]
fn test_parse_revset() {
let wc_symbol = RevsetExpression::symbol("@".to_string());
let foo_symbol = RevsetExpression::symbol("foo".to_string());
let bar_symbol = RevsetExpression::symbol("bar".to_string());
// Parse a single symbol (specifically the "checkout" symbol)
assert_eq!(parse("@"), Ok(wc_symbol.clone()));
// Parse a single symbol
assert_eq!(parse("foo"), Ok(foo_symbol.clone()));
// Internal '.', '-', and '+' are allowed
assert_eq!(
parse("foo.bar-v1+7"),
Ok(RevsetExpression::symbol("foo.bar-v1+7".to_string()))
);
assert_eq!(
parse("foo.bar-v1+7-"),
Ok(RevsetExpression::symbol("foo.bar-v1+7".to_string()).parents())
);
// Default arguments for *branches() are all ""
assert_eq!(parse("branches()"), parse(r#"branches("")"#));
assert_eq!(parse("remote_branches()"), parse(r#"remote_branches("")"#));
assert_eq!(
parse("remote_branches()"),
parse(r#"remote_branches("", "")"#)
);
// '.' is not allowed at the beginning or end
assert_eq!(parse(".foo"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo."), Err(RevsetParseErrorKind::SyntaxError));
// Multiple '.', '-', '+' are not allowed
assert_eq!(parse("foo.+bar"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo--bar"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo+-bar"), Err(RevsetParseErrorKind::SyntaxError));
// Parse a parenthesized symbol
assert_eq!(parse("(foo)"), Ok(foo_symbol.clone()));
// Parse a quoted symbol
assert_eq!(parse("\"foo\""), Ok(foo_symbol.clone()));
// Parse the "parents" operator
assert_eq!(parse("@-"), Ok(wc_symbol.parents()));
// Parse the "children" operator
assert_eq!(parse("@+"), Ok(wc_symbol.children()));
// Parse the "ancestors" operator
assert_eq!(parse(":@"), Ok(wc_symbol.ancestors()));
// Parse the "descendants" operator
assert_eq!(parse("@:"), Ok(wc_symbol.descendants()));
// Parse the "dag range" operator
assert_eq!(parse("foo:bar"), Ok(foo_symbol.dag_range_to(&bar_symbol)));
// Parse the "range" prefix operator
assert_eq!(parse("..@"), Ok(wc_symbol.ancestors()));
assert_eq!(
parse("@.."),
Ok(wc_symbol.range(&RevsetExpression::visible_heads()))
);
assert_eq!(parse("foo..bar"), Ok(foo_symbol.range(&bar_symbol)));
// Parse the "negate" operator
assert_eq!(parse("~ foo"), Ok(foo_symbol.negated()));
assert_eq!(
parse("~ ~~ foo"),
Ok(foo_symbol.negated().negated().negated())
);
// Parse the "intersection" operator
assert_eq!(parse("foo & bar"), Ok(foo_symbol.intersection(&bar_symbol)));
// Parse the "union" operator
assert_eq!(parse("foo | bar"), Ok(foo_symbol.union(&bar_symbol)));
// Parse the "difference" operator
assert_eq!(parse("foo ~ bar"), Ok(foo_symbol.minus(&bar_symbol)));
// Parentheses are allowed before suffix operators
assert_eq!(parse("(@)-"), Ok(wc_symbol.parents()));
// Space is allowed around expressions
assert_eq!(parse(" :@ "), Ok(wc_symbol.ancestors()));
assert_eq!(parse("( :@ )"), Ok(wc_symbol.ancestors()));
// Space is not allowed around prefix operators
assert_eq!(parse(" : @ "), Err(RevsetParseErrorKind::SyntaxError));
// Incomplete parse
assert_eq!(parse("foo | -"), Err(RevsetParseErrorKind::SyntaxError));
// Space is allowed around infix operators and function arguments
assert_eq!(
parse(" description( arg1 ) ~ file( arg1 , arg2 ) ~ visible_heads( ) "),
Ok(
RevsetExpression::filter(RevsetFilterPredicate::Description("arg1".to_string()))
.minus(&RevsetExpression::filter(RevsetFilterPredicate::File(
Some(vec![
RepoPath::from_internal_string("arg1"),
RepoPath::from_internal_string("arg2"),
])
)))
.minus(&RevsetExpression::visible_heads())
)
);
// Space is allowed around keyword arguments
assert_eq!(
parse("remote_branches( remote = foo )").unwrap(),
parse("remote_branches(remote=foo)").unwrap(),
);
// Trailing comma isn't allowed for empty argument
assert!(parse("branches(,)").is_err());
// Trailing comma is allowed for the last argument
assert!(parse("branches(a,)").is_ok());
assert!(parse("branches(a , )").is_ok());
assert!(parse("branches(,a)").is_err());
assert!(parse("branches(a,,)").is_err());
assert!(parse("branches(a , , )").is_err());
assert!(parse("file(a,b,)").is_ok());
assert!(parse("file(a,,b)").is_err());
assert!(parse("remote_branches(a,remote=b , )").is_ok());
assert!(parse("remote_branches(a,,remote=b)").is_err());
}
#[test]
fn test_parse_whitespace() {
let ascii_whitespaces: String = ('\x00'..='\x7f')
.filter(char::is_ascii_whitespace)
.collect();
assert_eq!(
parse(&format!("{ascii_whitespaces}all()")).unwrap(),
parse("all()").unwrap(),
);
}
#[test]
fn test_parse_revset_alias_formal_parameter() {
let mut aliases_map = RevsetAliasesMap::new();
// Trailing comma isn't allowed for empty parameter
assert!(aliases_map.insert("f(,)", "none()").is_err());
// Trailing comma is allowed for the last parameter
assert!(aliases_map.insert("g(a,)", "none()").is_ok());
assert!(aliases_map.insert("h(a , )", "none()").is_ok());
assert!(aliases_map.insert("i(,a)", "none()").is_err());
assert!(aliases_map.insert("j(a,,)", "none()").is_err());
assert!(aliases_map.insert("k(a , , )", "none()").is_err());
assert!(aliases_map.insert("l(a,b,)", "none()").is_ok());
assert!(aliases_map.insert("m(a,,b)", "none()").is_err());
}
#[test]
fn test_parse_revset_compat_operator() {
assert_eq!(
parse("foo^"),
Err(RevsetParseErrorKind::NotPostfixOperator {
op: "^".to_owned(),
similar_op: "-".to_owned(),
description: "parents".to_owned(),
})
);
assert_eq!(
parse("foo + bar"),
Err(RevsetParseErrorKind::NotInfixOperator {
op: "+".to_owned(),
similar_op: "|".to_owned(),
description: "union".to_owned(),
})
);
assert_eq!(
parse("foo - bar"),
Err(RevsetParseErrorKind::NotInfixOperator {
op: "-".to_owned(),
similar_op: "~".to_owned(),
description: "difference".to_owned(),
})
);
}
#[test]
fn test_parse_revset_operator_combinations() {
let foo_symbol = RevsetExpression::symbol("foo".to_string());
// Parse repeated "parents" operator
assert_eq!(
parse("foo---"),
Ok(foo_symbol.parents().parents().parents())
);
// Parse repeated "children" operator
assert_eq!(
parse("foo+++"),
Ok(foo_symbol.children().children().children())
);
// Set operator associativity/precedence
assert_eq!(parse("~x|y").unwrap(), parse("(~x)|y").unwrap());
assert_eq!(parse("x&~y").unwrap(), parse("x&(~y)").unwrap());
assert_eq!(parse("x~~y").unwrap(), parse("x~(~y)").unwrap());
assert_eq!(parse("x~~~y").unwrap(), parse("x~(~(~y))").unwrap());
assert_eq!(parse("~x:y").unwrap(), parse("~(x:y)").unwrap());
assert_eq!(parse("x|y|z").unwrap(), parse("(x|y)|z").unwrap());
assert_eq!(parse("x&y|z").unwrap(), parse("(x&y)|z").unwrap());
assert_eq!(parse("x|y&z").unwrap(), parse("x|(y&z)").unwrap());
assert_eq!(parse("x|y~z").unwrap(), parse("x|(y~z)").unwrap());
// Parse repeated "ancestors"/"descendants"/"dag range"/"range" operators
assert_eq!(parse(":foo:"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("::foo"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo::"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo::bar"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse(":foo:bar"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo:bar:"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("....foo"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo...."), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo.....bar"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("..foo..bar"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(parse("foo..bar.."), Err(RevsetParseErrorKind::SyntaxError));
// Parse combinations of "parents"/"children" operators and the range operators.
// The former bind more strongly.
assert_eq!(parse("foo-+"), Ok(foo_symbol.parents().children()));
assert_eq!(parse("foo-:"), Ok(foo_symbol.parents().descendants()));
assert_eq!(parse(":foo+"), Ok(foo_symbol.children().ancestors()));
}
#[test]
fn test_parse_revset_function() {
let wc_symbol = RevsetExpression::symbol("@".to_string());
assert_eq!(parse("parents(@)"), Ok(wc_symbol.parents()));
assert_eq!(parse("parents((@))"), Ok(wc_symbol.parents()));
assert_eq!(parse("parents(\"@\")"), Ok(wc_symbol.parents()));
assert_eq!(
parse("ancestors(parents(@))"),
Ok(wc_symbol.parents().ancestors())
);
assert_eq!(parse("parents(@"), Err(RevsetParseErrorKind::SyntaxError));
assert_eq!(
parse("parents(@,@)"),
Err(RevsetParseErrorKind::InvalidFunctionArguments {
name: "parents".to_string(),
message: "Expected 1 arguments".to_string()
})
);
assert_eq!(
parse(r#"description("")"#),
Ok(RevsetExpression::filter(
RevsetFilterPredicate::Description("".to_string())
))
);
assert_eq!(
parse("description(foo)"),
Ok(RevsetExpression::filter(
RevsetFilterPredicate::Description("foo".to_string())
))
);
assert_eq!(
parse("description(visible_heads())"),
Err(RevsetParseErrorKind::InvalidFunctionArguments {
name: "description".to_string(),
message: "Expected function argument of type string".to_string()
})
);
assert_eq!(
parse("description((foo))"),
Ok(RevsetExpression::filter(
RevsetFilterPredicate::Description("foo".to_string())
))
);
assert_eq!(
parse("description(\"(foo)\")"),
Ok(RevsetExpression::filter(
RevsetFilterPredicate::Description("(foo)".to_string())
))
);
assert_eq!(
parse("empty()"),
Ok(RevsetExpression::filter(RevsetFilterPredicate::File(None)).negated())
);
assert!(parse("empty(foo)").is_err());
assert!(parse("file()").is_err());
assert_eq!(
parse("file(foo)"),
Ok(RevsetExpression::filter(RevsetFilterPredicate::File(Some(
vec![RepoPath::from_internal_string("foo")]
))))
);
assert_eq!(
parse("file(foo, bar, baz)"),
Ok(RevsetExpression::filter(RevsetFilterPredicate::File(Some(
vec![
RepoPath::from_internal_string("foo"),
RepoPath::from_internal_string("bar"),
RepoPath::from_internal_string("baz"),
]
))))
);
}
#[test]
fn test_parse_revset_keyword_arguments() {
assert_eq!(
parse("remote_branches(remote=foo)").unwrap(),
parse(r#"remote_branches("", foo)"#).unwrap(),
);
assert_eq!(
parse("remote_branches(foo, remote=bar)").unwrap(),
parse(r#"remote_branches(foo, bar)"#).unwrap(),
);
insta::assert_debug_snapshot!(
parse(r#"remote_branches(remote=foo, bar)"#).unwrap_err(),
@r###"
InvalidFunctionArguments {
name: "remote_branches",
message: "Positional argument follows keyword argument",
}
"###);
insta::assert_debug_snapshot!(
parse(r#"remote_branches("", foo, remote=bar)"#).unwrap_err(),
@r###"
InvalidFunctionArguments {
name: "remote_branches",
message: "Got multiple values for keyword \"remote\"",
}
"###);
insta::assert_debug_snapshot!(
parse(r#"remote_branches(remote=bar, remote=bar)"#).unwrap_err(),
@r###"
InvalidFunctionArguments {
name: "remote_branches",
message: "Got multiple values for keyword \"remote\"",
}
"###);
insta::assert_debug_snapshot!(
parse(r#"remote_branches(unknown=bar)"#).unwrap_err(),
@r###"
InvalidFunctionArguments {
name: "remote_branches",
message: "Unexpected keyword argument \"unknown\"",
}
"###);
}
#[test]
fn test_expand_symbol_alias() {
assert_eq!(
parse_with_aliases("AB|c", [("AB", "a|b")]).unwrap(),
parse("(a|b)|c").unwrap()
);
assert_eq!(
parse_with_aliases("AB:heads(AB)", [("AB", "a|b")]).unwrap(),
parse("(a|b):heads(a|b)").unwrap()
);
// Not string substitution 'a&b|c', but tree substitution.
assert_eq!(
parse_with_aliases("a&BC", [("BC", "b|c")]).unwrap(),
parse("a&(b|c)").unwrap()
);
// String literal should not be substituted with alias.
assert_eq!(
parse_with_aliases(r#"A|"A""#, [("A", "a")]).unwrap(),
parse("a|A").unwrap()
);
// Alias can be substituted to string literal.
assert_eq!(
parse_with_aliases("author(A)", [("A", "a")]).unwrap(),
parse("author(a)").unwrap()
);
// Multi-level substitution.
assert_eq!(
parse_with_aliases("A", [("A", "BC"), ("BC", "b|C"), ("C", "c")]).unwrap(),
parse("b|c").unwrap()
);
// Infinite recursion, where the top-level error isn't of RecursiveAlias kind.
assert_eq!(
parse_with_aliases("A", [("A", "A")]),
Err(RevsetParseErrorKind::BadAliasExpansion("A".to_owned()))
);
assert_eq!(
parse_with_aliases("A", [("A", "B"), ("B", "b|C"), ("C", "c|B")]),
Err(RevsetParseErrorKind::BadAliasExpansion("A".to_owned()))
);
// Error in alias definition.
assert_eq!(
parse_with_aliases("A", [("A", "a(")]),
Err(RevsetParseErrorKind::BadAliasExpansion("A".to_owned()))
);
}
#[test]
fn test_expand_function_alias() {
assert_eq!(
parse_with_aliases("F()", [("F( )", "a")]).unwrap(),
parse("a").unwrap()
);
assert_eq!(
parse_with_aliases("F(a)", [("F( x )", "x")]).unwrap(),
parse("a").unwrap()
);
assert_eq!(
parse_with_aliases("F(a, b)", [("F( x, y )", "x|y")]).unwrap(),
parse("a|b").unwrap()
);
// Arguments should be resolved in the current scope.
assert_eq!(
parse_with_aliases("F(a:y,b:x)", [("F(x,y)", "x|y")]).unwrap(),
parse("(a:y)|(b:x)").unwrap()
);
// F(a) -> G(a)&y -> (x|a)&y
assert_eq!(
parse_with_aliases("F(a)", [("F(x)", "G(x)&y"), ("G(y)", "x|y")]).unwrap(),
parse("(x|a)&y").unwrap()
);
// F(G(a)) -> F(x|a) -> G(x|a)&y -> (x|(x|a))&y
assert_eq!(
parse_with_aliases("F(G(a))", [("F(x)", "G(x)&y"), ("G(y)", "x|y")]).unwrap(),
parse("(x|(x|a))&y").unwrap()
);
// Function parameter should precede the symbol alias.
assert_eq!(
parse_with_aliases("F(a)|X", [("F(X)", "X"), ("X", "x")]).unwrap(),
parse("a|x").unwrap()
);
// Function parameter shouldn't be expanded in symbol alias.
assert_eq!(
parse_with_aliases("F(a)", [("F(x)", "x|A"), ("A", "x")]).unwrap(),
parse("a|x").unwrap()
);
// String literal should not be substituted with function parameter.
assert_eq!(
parse_with_aliases("F(a)", [("F(x)", r#"x|"x""#)]).unwrap(),
parse("a|x").unwrap()
);
// Pass string literal as parameter.
assert_eq!(
parse_with_aliases("F(a)", [("F(x)", "author(x)|committer(x)")]).unwrap(),
parse("author(a)|committer(a)").unwrap()
);
// Function and symbol aliases reside in separate namespaces.
assert_eq!(
parse_with_aliases("A()", [("A()", "A"), ("A", "a")]).unwrap(),
parse("a").unwrap()
);
// Invalid number of arguments.
assert_eq!(
parse_with_aliases("F(a)", [("F()", "x")]),
Err(RevsetParseErrorKind::InvalidFunctionArguments {
name: "F".to_owned(),
message: "Expected 0 arguments".to_owned()
})
);
assert_eq!(
parse_with_aliases("F()", [("F(x)", "x")]),
Err(RevsetParseErrorKind::InvalidFunctionArguments {
name: "F".to_owned(),
message: "Expected 1 arguments".to_owned()
})
);
assert_eq!(
parse_with_aliases("F(a,b,c)", [("F(x,y)", "x|y")]),
Err(RevsetParseErrorKind::InvalidFunctionArguments {
name: "F".to_owned(),
message: "Expected 2 arguments".to_owned()
})
);
// Keyword argument isn't supported for now.
assert_eq!(
parse_with_aliases("F(x=y)", [("F(x)", "x")]),
Err(RevsetParseErrorKind::InvalidFunctionArguments {
name: "F".to_owned(),
message: r#"Unexpected keyword argument "x""#.to_owned()
})
);
// Infinite recursion, where the top-level error isn't of RecursiveAlias kind.
assert_eq!(
parse_with_aliases(
"F(a)",
[("F(x)", "G(x)"), ("G(x)", "H(x)"), ("H(x)", "F(x)")]
),
Err(RevsetParseErrorKind::BadAliasExpansion("F()".to_owned()))
);
}
#[test]
fn test_optimize_subtree() {
// Check that transform_expression_bottom_up() never rewrites enum variant
// (e.g. Range -> DagRange) nor reorders arguments unintentionally.
assert_eq!(
optimize(parse("parents(branches() & all())").unwrap()),
RevsetExpression::branches("".to_owned()).parents()
);
assert_eq!(
optimize(parse("children(branches() & all())").unwrap()),
RevsetExpression::branches("".to_owned()).children()
);
assert_eq!(
optimize(parse("ancestors(branches() & all())").unwrap()),
RevsetExpression::branches("".to_owned()).ancestors()
);
assert_eq!(
optimize(parse("descendants(branches() & all())").unwrap()),
RevsetExpression::branches("".to_owned()).descendants()
);
assert_eq!(
optimize(parse("(branches() & all())..(all() & tags())").unwrap()),
RevsetExpression::branches("".to_owned()).range(&RevsetExpression::tags())
);
assert_eq!(
optimize(parse("(branches() & all()):(all() & tags())").unwrap()),
RevsetExpression::branches("".to_owned()).dag_range_to(&RevsetExpression::tags())
);
assert_eq!(
optimize(parse("heads(branches() & all())").unwrap()),
RevsetExpression::branches("".to_owned()).heads()
);
assert_eq!(
optimize(parse("roots(branches() & all())").unwrap()),
RevsetExpression::branches("".to_owned()).roots()
);
assert_eq!(
optimize(parse("latest(branches() & all(), 2)").unwrap()),
RevsetExpression::branches("".to_owned()).latest(2)
);
assert_eq!(
optimize(parse("present(foo ~ bar)").unwrap()),
Rc::new(RevsetExpression::Present(
RevsetExpression::symbol("foo".to_owned())
.minus(&RevsetExpression::symbol("bar".to_owned()))
))
);
assert_eq!(
optimize(parse("present(branches() & all())").unwrap()),
Rc::new(RevsetExpression::Present(RevsetExpression::branches(
"".to_owned()
)))
);
assert_eq!(
optimize(parse("~branches() & all()").unwrap()),
RevsetExpression::branches("".to_owned()).negated()
);
assert_eq!(
optimize(parse("(branches() & all()) | (all() & tags())").unwrap()),
RevsetExpression::branches("".to_owned()).union(&RevsetExpression::tags())
);
assert_eq!(
optimize(parse("(branches() & all()) & (all() & tags())").unwrap()),
RevsetExpression::branches("".to_owned()).intersection(&RevsetExpression::tags())
);
assert_eq!(
optimize(parse("(branches() & all()) ~ (all() & tags())").unwrap()),
RevsetExpression::branches("".to_owned()).minus(&RevsetExpression::tags())
);
}
#[test]
fn test_optimize_unchanged_subtree() {
fn unwrap_union(
expression: &RevsetExpression,
) -> (&Rc<RevsetExpression>, &Rc<RevsetExpression>) {
match expression {
RevsetExpression::Union(left, right) => (left, right),
_ => panic!("unexpected expression: {expression:?}"),
}
}
// transform_expression_bottom_up() should not recreate tree unnecessarily.
let parsed = parse("foo-").unwrap();
let optimized = optimize(parsed.clone());
assert!(Rc::ptr_eq(&parsed, &optimized));
let parsed = parse("branches() | tags()").unwrap();
let optimized = optimize(parsed.clone());
assert!(Rc::ptr_eq(&parsed, &optimized));
let parsed = parse("branches() & tags()").unwrap();
let optimized = optimize(parsed.clone());
assert!(Rc::ptr_eq(&parsed, &optimized));
// Only left subtree should be rewritten.
let parsed = parse("(branches() & all()) | tags()").unwrap();
let optimized = optimize(parsed.clone());
assert_eq!(
unwrap_union(&optimized).0.as_ref(),
&RevsetExpression::CommitRef(RevsetCommitRef::Branches("".to_owned()))
);
assert!(Rc::ptr_eq(
unwrap_union(&parsed).1,
unwrap_union(&optimized).1
));
// Only right subtree should be rewritten.
let parsed = parse("branches() | (all() & tags())").unwrap();
let optimized = optimize(parsed.clone());
assert!(Rc::ptr_eq(
unwrap_union(&parsed).0,
unwrap_union(&optimized).0
));
assert_eq!(
unwrap_union(&optimized).1.as_ref(),
&RevsetExpression::CommitRef(RevsetCommitRef::Tags),
);
}
#[test]
fn test_optimize_difference() {
insta::assert_debug_snapshot!(optimize(parse("foo & ~bar").unwrap()), @r###"
Difference(
CommitRef(
Symbol(
"foo",
),
),
CommitRef(
Symbol(
"bar",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("~foo & bar").unwrap()), @r###"
Difference(
CommitRef(
Symbol(
"bar",
),
),
CommitRef(
Symbol(
"foo",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("~foo & bar & ~baz").unwrap()), @r###"
Difference(
Difference(
CommitRef(
Symbol(
"bar",
),
),
CommitRef(
Symbol(
"foo",
),
),
),
CommitRef(
Symbol(
"baz",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("(all() & ~foo) & bar").unwrap()), @r###"
Difference(
CommitRef(
Symbol(
"bar",
),
),
CommitRef(
Symbol(
"foo",
),
),
)
"###);
// Binary difference operation should go through the same optimization passes.
insta::assert_debug_snapshot!(optimize(parse("all() ~ foo").unwrap()), @r###"
NotIn(
CommitRef(
Symbol(
"foo",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("foo ~ bar").unwrap()), @r###"
Difference(
CommitRef(
Symbol(
"foo",
),
),
CommitRef(
Symbol(
"bar",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("(all() ~ foo) & bar").unwrap()), @r###"
Difference(
CommitRef(
Symbol(
"bar",
),
),
CommitRef(
Symbol(
"foo",
),
),
)
"###);
// Range expression.
insta::assert_debug_snapshot!(optimize(parse(":foo & ~:bar").unwrap()), @r###"
Range {
roots: CommitRef(
Symbol(
"bar",
),
),
heads: CommitRef(
Symbol(
"foo",
),
),
generation: 0..18446744073709551615,
}
"###);
insta::assert_debug_snapshot!(optimize(parse("~:foo & :bar").unwrap()), @r###"
Range {
roots: CommitRef(
Symbol(
"foo",
),
),
heads: CommitRef(
Symbol(
"bar",
),
),
generation: 0..18446744073709551615,
}
"###);
insta::assert_debug_snapshot!(optimize(parse("foo..").unwrap()), @r###"
Range {
roots: CommitRef(
Symbol(
"foo",
),
),
heads: CommitRef(
VisibleHeads,
),
generation: 0..18446744073709551615,
}
"###);
insta::assert_debug_snapshot!(optimize(parse("foo..bar").unwrap()), @r###"
Range {
roots: CommitRef(
Symbol(
"foo",
),
),
heads: CommitRef(
Symbol(
"bar",
),
),
generation: 0..18446744073709551615,
}
"###);
// Double/triple negates.
insta::assert_debug_snapshot!(optimize(parse("foo & ~~bar").unwrap()), @r###"
Intersection(
CommitRef(
Symbol(
"foo",
),
),
CommitRef(
Symbol(
"bar",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("foo & ~~~bar").unwrap()), @r###"
Difference(
CommitRef(
Symbol(
"foo",
),
),
CommitRef(
Symbol(
"bar",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("~(all() & ~foo) & bar").unwrap()), @r###"
Intersection(
CommitRef(
Symbol(
"foo",
),
),
CommitRef(
Symbol(
"bar",
),
),
)
"###);
// Should be better than '(all() & ~foo) & (all() & ~bar)'.
insta::assert_debug_snapshot!(optimize(parse("~foo & ~bar").unwrap()), @r###"
Difference(
NotIn(
CommitRef(
Symbol(
"foo",
),
),
),
CommitRef(
Symbol(
"bar",
),
),
)
"###);
}
#[test]
fn test_optimize_filter_difference() {
// '~empty()' -> '~~file(*)' -> 'file(*)'
insta::assert_debug_snapshot!(optimize(parse("~empty()").unwrap()), @r###"
Filter(
File(
None,
),
)
"###);
// '& baz' can be moved into the filter node, and form a difference node.
insta::assert_debug_snapshot!(
optimize(parse("(author(foo) & ~bar) & baz").unwrap()), @r###"
Intersection(
Difference(
CommitRef(
Symbol(
"baz",
),
),
CommitRef(
Symbol(
"bar",
),
),
),
Filter(
Author(
"foo",
),
),
)
"###);
// '~set & filter()' shouldn't be substituted.
insta::assert_debug_snapshot!(
optimize(parse("~foo & author(bar)").unwrap()), @r###"
Intersection(
NotIn(
CommitRef(
Symbol(
"foo",
),
),
),
Filter(
Author(
"bar",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("~foo & (author(bar) | baz)").unwrap()), @r###"
Intersection(
NotIn(
CommitRef(
Symbol(
"foo",
),
),
),
AsFilter(
Union(
Filter(
Author(
"bar",
),
),
CommitRef(
Symbol(
"baz",
),
),
),
),
)
"###);
// Filter should be moved right of the intersection.
insta::assert_debug_snapshot!(
optimize(parse("author(foo) ~ bar").unwrap()), @r###"
Intersection(
NotIn(
CommitRef(
Symbol(
"bar",
),
),
),
Filter(
Author(
"foo",
),
),
)
"###);
}
#[test]
fn test_optimize_filter_intersection() {
insta::assert_debug_snapshot!(optimize(parse("author(foo)").unwrap()), @r###"
Filter(
Author(
"foo",
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("foo & description(bar)").unwrap()), @r###"
Intersection(
CommitRef(
Symbol(
"foo",
),
),
Filter(
Description(
"bar",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("author(foo) & bar").unwrap()), @r###"
Intersection(
CommitRef(
Symbol(
"bar",
),
),
Filter(
Author(
"foo",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("author(foo) & committer(bar)").unwrap()), @r###"
Intersection(
Filter(
Author(
"foo",
),
),
Filter(
Committer(
"bar",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("foo & description(bar) & author(baz)").unwrap()), @r###"
Intersection(
Intersection(
CommitRef(
Symbol(
"foo",
),
),
Filter(
Description(
"bar",
),
),
),
Filter(
Author(
"baz",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("committer(foo) & bar & author(baz)").unwrap()), @r###"
Intersection(
Intersection(
CommitRef(
Symbol(
"bar",
),
),
Filter(
Committer(
"foo",
),
),
),
Filter(
Author(
"baz",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("committer(foo) & file(bar) & baz").unwrap()), @r###"
Intersection(
Intersection(
CommitRef(
Symbol(
"baz",
),
),
Filter(
Committer(
"foo",
),
),
),
Filter(
File(
Some(
[
"bar",
],
),
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("committer(foo) & file(bar) & author(baz)").unwrap()), @r###"
Intersection(
Intersection(
Filter(
Committer(
"foo",
),
),
Filter(
File(
Some(
[
"bar",
],
),
),
),
),
Filter(
Author(
"baz",
),
),
)
"###);
insta::assert_debug_snapshot!(optimize(parse("foo & file(bar) & baz").unwrap()), @r###"
Intersection(
Intersection(
CommitRef(
Symbol(
"foo",
),
),
CommitRef(
Symbol(
"baz",
),
),
),
Filter(
File(
Some(
[
"bar",
],
),
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("foo & description(bar) & author(baz) & qux").unwrap()), @r###"
Intersection(
Intersection(
Intersection(
CommitRef(
Symbol(
"foo",
),
),
CommitRef(
Symbol(
"qux",
),
),
),
Filter(
Description(
"bar",
),
),
),
Filter(
Author(
"baz",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("foo & description(bar) & parents(author(baz)) & qux").unwrap()), @r###"
Intersection(
Intersection(
Intersection(
CommitRef(
Symbol(
"foo",
),
),
Ancestors {
heads: Filter(
Author(
"baz",
),
),
generation: 1..2,
},
),
CommitRef(
Symbol(
"qux",
),
),
),
Filter(
Description(
"bar",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("foo & description(bar) & parents(author(baz) & qux)").unwrap()), @r###"
Intersection(
Intersection(
CommitRef(
Symbol(
"foo",
),
),
Ancestors {
heads: Intersection(
CommitRef(
Symbol(
"qux",
),
),
Filter(
Author(
"baz",
),
),
),
generation: 1..2,
},
),
Filter(
Description(
"bar",
),
),
)
"###);
// Symbols have to be pushed down to the innermost filter node.
insta::assert_debug_snapshot!(
optimize(parse("(a & author(A)) & (b & author(B)) & (c & author(C))").unwrap()), @r###"
Intersection(
Intersection(
Intersection(
Intersection(
Intersection(
CommitRef(
Symbol(
"a",
),
),
CommitRef(
Symbol(
"b",
),
),
),
CommitRef(
Symbol(
"c",
),
),
),
Filter(
Author(
"A",
),
),
),
Filter(
Author(
"B",
),
),
),
Filter(
Author(
"C",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("(a & author(A)) & ((b & author(B)) & (c & author(C))) & d").unwrap()),
@r###"
Intersection(
Intersection(
Intersection(
Intersection(
Intersection(
CommitRef(
Symbol(
"a",
),
),
Intersection(
CommitRef(
Symbol(
"b",
),
),
CommitRef(
Symbol(
"c",
),
),
),
),
CommitRef(
Symbol(
"d",
),
),
),
Filter(
Author(
"A",
),
),
),
Filter(
Author(
"B",
),
),
),
Filter(
Author(
"C",
),
),
)
"###);
// 'all()' moves in to 'filter()' first, so 'A & filter()' can be found.
insta::assert_debug_snapshot!(
optimize(parse("foo & (all() & description(bar)) & (author(baz) & all())").unwrap()),
@r###"
Intersection(
Intersection(
CommitRef(
Symbol(
"foo",
),
),
Filter(
Description(
"bar",
),
),
),
Filter(
Author(
"baz",
),
),
)
"###);
}
#[test]
fn test_optimize_filter_subtree() {
insta::assert_debug_snapshot!(
optimize(parse("(author(foo) | bar) & baz").unwrap()), @r###"
Intersection(
CommitRef(
Symbol(
"baz",
),
),
AsFilter(
Union(
Filter(
Author(
"foo",
),
),
CommitRef(
Symbol(
"bar",
),
),
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("(foo | committer(bar)) & description(baz) & qux").unwrap()), @r###"
Intersection(
Intersection(
CommitRef(
Symbol(
"qux",
),
),
AsFilter(
Union(
CommitRef(
Symbol(
"foo",
),
),
Filter(
Committer(
"bar",
),
),
),
),
),
Filter(
Description(
"baz",
),
),
)
"###);
insta::assert_debug_snapshot!(
optimize(parse("(~present(author(foo) & bar) | baz) & qux").unwrap()), @r###"
Intersection(
CommitRef(
Symbol(
"qux",
),
),
AsFilter(
Union(
AsFilter(
NotIn(
AsFilter(
Present(
Intersection(
CommitRef(
Symbol(
"bar",
),
),
Filter(
Author(
"foo",
),
),
),
),
),
),
),
CommitRef(
Symbol(
"baz",
),
),
),
),
)
"###);
// Symbols have to be pushed down to the innermost filter node.
insta::assert_debug_snapshot!(
optimize(parse(
"(a & (author(A) | 0)) & (b & (author(B) | 1)) & (c & (author(C) | 2))").unwrap()),
@r###"
Intersection(
Intersection(
Intersection(
Intersection(
Intersection(
CommitRef(
Symbol(
"a",
),
),
CommitRef(
Symbol(
"b",
),
),
),
CommitRef(
Symbol(
"c",
),
),
),
AsFilter(
Union(
Filter(
Author(
"A",
),
),
CommitRef(
Symbol(
"0",
),
),
),
),
),
AsFilter(
Union(
Filter(
Author(
"B",
),
),
CommitRef(
Symbol(
"1",
),
),
),
),
),
AsFilter(
Union(
Filter(
Author(
"C",
),
),
CommitRef(
Symbol(
"2",
),
),
),
),
)
"###);
}
#[test]
fn test_optimize_ancestors() {
// Typical scenario: fold nested parents()
insta::assert_debug_snapshot!(optimize(parse("foo--").unwrap()), @r###"
Ancestors {
heads: CommitRef(
Symbol(
"foo",
),
),
generation: 2..3,
}
"###);
insta::assert_debug_snapshot!(optimize(parse(":(foo---)").unwrap()), @r###"
Ancestors {
heads: CommitRef(
Symbol(
"foo",
),
),
generation: 3..18446744073709551615,
}
"###);
insta::assert_debug_snapshot!(optimize(parse("(:foo)---").unwrap()), @r###"
Ancestors {
heads: CommitRef(
Symbol(
"foo",
),
),
generation: 3..18446744073709551615,
}
"###);
// 'foo-+' is not 'foo'.
insta::assert_debug_snapshot!(optimize(parse("foo---+").unwrap()), @r###"
Descendants {
roots: Ancestors {
heads: CommitRef(
Symbol(
"foo",
),
),
generation: 3..4,
},
generation: 1..2,
}
"###);
// For 'roots..heads', heads can be folded.
insta::assert_debug_snapshot!(optimize(parse("foo..(bar--)").unwrap()), @r###"
Range {
roots: CommitRef(
Symbol(
"foo",
),
),
heads: CommitRef(
Symbol(
"bar",
),
),
generation: 2..18446744073709551615,
}
"###);
// roots can also be folded, but range expression cannot be reconstructed.
// No idea if this is better than the original range expression.
insta::assert_debug_snapshot!(optimize(parse("(foo--)..(bar---)").unwrap()), @r###"
Difference(
Ancestors {
heads: CommitRef(
Symbol(
"bar",
),
),
generation: 3..18446744073709551615,
},
Ancestors {
heads: CommitRef(
Symbol(
"foo",
),
),
generation: 2..18446744073709551615,
},
)
"###);
// If inner range is bounded by roots, it cannot be merged.
// e.g. '..(foo..foo)' is equivalent to '..none()', not to '..foo'
insta::assert_debug_snapshot!(optimize(parse("(foo..bar)--").unwrap()), @r###"
Ancestors {
heads: Range {
roots: CommitRef(
Symbol(
"foo",
),
),
heads: CommitRef(
Symbol(
"bar",
),
),
generation: 0..18446744073709551615,
},
generation: 2..3,
}
"###);
insta::assert_debug_snapshot!(optimize(parse("foo..(bar..baz)").unwrap()), @r###"
Range {
roots: CommitRef(
Symbol(
"foo",
),
),
heads: Range {
roots: CommitRef(
Symbol(
"bar",
),
),
heads: CommitRef(
Symbol(
"baz",
),
),
generation: 0..18446744073709551615,
},
generation: 0..18446744073709551615,
}
"###);
// Ancestors of empty generation range should be empty.
// TODO: rewrite these tests if we added syntax for arbitrary generation
// ancestors
let empty_generation_ancestors = |heads| {
Rc::new(RevsetExpression::Ancestors {
heads,
generation: GENERATION_RANGE_EMPTY,
})
};
insta::assert_debug_snapshot!(
optimize(empty_generation_ancestors(
RevsetExpression::symbol("foo".to_owned()).ancestors()
)),
@r###"
Ancestors {
heads: CommitRef(
Symbol(
"foo",
),
),
generation: 0..0,
}
"###
);
insta::assert_debug_snapshot!(
optimize(
empty_generation_ancestors(RevsetExpression::symbol("foo".to_owned())).ancestors()
),
@r###"
Ancestors {
heads: CommitRef(
Symbol(
"foo",
),
),
generation: 0..0,
}
"###
);
}
#[test]
fn test_optimize_descendants() {
// Typical scenario: fold nested children()
insta::assert_debug_snapshot!(optimize(parse("foo++").unwrap()), @r###"
Descendants {
roots: CommitRef(
Symbol(
"foo",
),
),
generation: 2..3,
}
"###);
insta::assert_debug_snapshot!(optimize(parse("(foo+++):").unwrap()), @r###"
Descendants {
roots: CommitRef(
Symbol(
"foo",
),
),
generation: 3..18446744073709551615,
}
"###);
insta::assert_debug_snapshot!(optimize(parse("(foo:)+++").unwrap()), @r###"
Descendants {
roots: CommitRef(
Symbol(
"foo",
),
),
generation: 3..18446744073709551615,
}
"###);
// 'foo+-' is not 'foo'.
insta::assert_debug_snapshot!(optimize(parse("foo+++-").unwrap()), @r###"
Ancestors {
heads: Descendants {
roots: CommitRef(
Symbol(
"foo",
),
),
generation: 3..4,
},
generation: 1..2,
}
"###);
// TODO: Inner Descendants can be folded into DagRange. Perhaps, we can rewrite
// 'x:y' to 'x: & :y' first, so the common substitution rule can handle both
// 'x+:y' and 'x+ & :y'.
insta::assert_debug_snapshot!(optimize(parse("(foo++):bar").unwrap()), @r###"
DagRange {
roots: Descendants {
roots: CommitRef(
Symbol(
"foo",
),
),
generation: 2..3,
},
heads: CommitRef(
Symbol(
"bar",
),
),
}
"###);
}
}