zed/crates/gpui2/src/window.rs

2208 lines
72 KiB
Rust

use crate::{
px, size, Action, AnyBox, AnyDrag, AnyView, AppContext, AsyncWindowContext, AvailableSpace,
Bounds, BoxShadow, Context, Corners, DevicePixels, DispatchContext, DisplayId, Edges, Effect,
Entity, EntityId, EventEmitter, FileDropEvent, FocusEvent, FontId, GlobalElementId, GlyphId,
Hsla, ImageData, InputEvent, IsZero, KeyListener, KeyMatch, KeyMatcher, Keystroke, LayoutId,
Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseDownEvent, MouseMoveEvent,
MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformWindow, Point,
PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams,
RenderSvgParams, ScaledPixels, SceneBuilder, Shadow, SharedString, Size, Style, SubscriberSet,
Subscription, TaffyLayoutEngine, Task, Underline, UnderlineStyle, View, VisualContext,
WeakView, WindowBounds, WindowOptions, SUBPIXEL_VARIANTS,
};
use anyhow::{anyhow, Result};
use collections::HashMap;
use derive_more::{Deref, DerefMut};
use futures::{
channel::{mpsc, oneshot},
StreamExt,
};
use parking_lot::RwLock;
use slotmap::SlotMap;
use smallvec::SmallVec;
use std::{
any::{Any, TypeId},
borrow::{Borrow, BorrowMut, Cow},
fmt::Debug,
future::Future,
hash::{Hash, Hasher},
marker::PhantomData,
mem,
rc::Rc,
sync::{
atomic::{AtomicUsize, Ordering::SeqCst},
Arc,
},
};
use util::ResultExt;
/// A global stacking order, which is created by stacking successive z-index values.
/// Each z-index will always be interpreted in the context of its parent z-index.
#[derive(Deref, DerefMut, Ord, PartialOrd, Eq, PartialEq, Clone, Default)]
pub(crate) struct StackingOrder(pub(crate) SmallVec<[u32; 16]>);
/// Represents the two different phases when dispatching events.
#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
pub enum DispatchPhase {
/// After the capture phase comes the bubble phase, in which mouse event listeners are
/// invoked front to back and keyboard event listeners are invoked from the focused element
/// to the root of the element tree. This is the phase you'll most commonly want to use when
/// registering event listeners.
#[default]
Bubble,
/// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
/// listeners are invoked from the root of the tree downward toward the focused element. This phase
/// is used for special purposes such as clearing the "pressed" state for click events. If
/// you stop event propagation during this phase, you need to know what you're doing. Handlers
/// outside of the immediate region may rely on detecting non-local events during this phase.
Capture,
}
type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
type AnyListener = Box<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
type AnyKeyListener = Box<
dyn Fn(
&dyn Any,
&[&DispatchContext],
DispatchPhase,
&mut WindowContext,
) -> Option<Box<dyn Action>>
+ 'static,
>;
type AnyFocusListener = Box<dyn Fn(&FocusEvent, &mut WindowContext) + 'static>;
slotmap::new_key_type! { pub struct FocusId; }
/// A handle which can be used to track and manipulate the focused element in a window.
pub struct FocusHandle {
pub(crate) id: FocusId,
handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
}
impl FocusHandle {
pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
let id = handles.write().insert(AtomicUsize::new(1));
Self {
id,
handles: handles.clone(),
}
}
pub(crate) fn for_id(
id: FocusId,
handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
) -> Option<Self> {
let lock = handles.read();
let ref_count = lock.get(id)?;
if ref_count.load(SeqCst) == 0 {
None
} else {
ref_count.fetch_add(1, SeqCst);
Some(Self {
id,
handles: handles.clone(),
})
}
}
/// Obtains whether the element associated with this handle is currently focused.
pub fn is_focused(&self, cx: &WindowContext) -> bool {
cx.window.focus == Some(self.id)
}
/// Obtains whether the element associated with this handle contains the focused
/// element or is itself focused.
pub fn contains_focused(&self, cx: &WindowContext) -> bool {
cx.focused()
.map_or(false, |focused| self.contains(&focused, cx))
}
/// Obtains whether the element associated with this handle is contained within the
/// focused element or is itself focused.
pub fn within_focused(&self, cx: &WindowContext) -> bool {
let focused = cx.focused();
focused.map_or(false, |focused| focused.contains(self, cx))
}
/// Obtains whether this handle contains the given handle in the most recently rendered frame.
pub(crate) fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
let mut ancestor = Some(other.id);
while let Some(ancestor_id) = ancestor {
if self.id == ancestor_id {
return true;
} else {
ancestor = cx.window.focus_parents_by_child.get(&ancestor_id).copied();
}
}
false
}
}
impl Clone for FocusHandle {
fn clone(&self) -> Self {
Self::for_id(self.id, &self.handles).unwrap()
}
}
impl PartialEq for FocusHandle {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for FocusHandle {}
impl Drop for FocusHandle {
fn drop(&mut self) {
self.handles
.read()
.get(self.id)
.unwrap()
.fetch_sub(1, SeqCst);
}
}
// Holds the state for a specific window.
pub struct Window {
pub(crate) handle: AnyWindowHandle,
pub(crate) removed: bool,
platform_window: Box<dyn PlatformWindow>,
display_id: DisplayId,
sprite_atlas: Arc<dyn PlatformAtlas>,
rem_size: Pixels,
content_size: Size<Pixels>,
pub(crate) layout_engine: TaffyLayoutEngine,
pub(crate) root_view: Option<AnyView>,
pub(crate) element_id_stack: GlobalElementId,
prev_frame_element_states: HashMap<GlobalElementId, AnyBox>,
element_states: HashMap<GlobalElementId, AnyBox>,
prev_frame_key_matchers: HashMap<GlobalElementId, KeyMatcher>,
key_matchers: HashMap<GlobalElementId, KeyMatcher>,
z_index_stack: StackingOrder,
content_mask_stack: Vec<ContentMask<Pixels>>,
element_offset_stack: Vec<Point<Pixels>>,
mouse_listeners: HashMap<TypeId, Vec<(StackingOrder, AnyListener)>>,
key_dispatch_stack: Vec<KeyDispatchStackFrame>,
freeze_key_dispatch_stack: bool,
focus_stack: Vec<FocusId>,
focus_parents_by_child: HashMap<FocusId, FocusId>,
pub(crate) focus_listeners: Vec<AnyFocusListener>,
pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
default_prevented: bool,
mouse_position: Point<Pixels>,
scale_factor: f32,
bounds: WindowBounds,
bounds_observers: SubscriberSet<(), AnyObserver>,
active: bool,
activation_observers: SubscriberSet<(), AnyObserver>,
pub(crate) scene_builder: SceneBuilder,
pub(crate) dirty: bool,
pub(crate) last_blur: Option<Option<FocusId>>,
pub(crate) focus: Option<FocusId>,
}
impl Window {
pub(crate) fn new(
handle: AnyWindowHandle,
options: WindowOptions,
cx: &mut AppContext,
) -> Self {
let platform_window = cx.platform.open_window(handle, options);
let display_id = platform_window.display().id();
let sprite_atlas = platform_window.sprite_atlas();
let mouse_position = platform_window.mouse_position();
let content_size = platform_window.content_size();
let scale_factor = platform_window.scale_factor();
let bounds = platform_window.bounds();
platform_window.on_resize(Box::new({
let mut cx = cx.to_async();
move |_, _| {
handle
.update(&mut cx, |_, cx| cx.window_bounds_changed())
.log_err();
}
}));
platform_window.on_moved(Box::new({
let mut cx = cx.to_async();
move || {
handle
.update(&mut cx, |_, cx| cx.window_bounds_changed())
.log_err();
}
}));
platform_window.on_active_status_change(Box::new({
let mut cx = cx.to_async();
move |active| {
handle
.update(&mut cx, |_, cx| {
cx.window.active = active;
cx.window
.activation_observers
.clone()
.retain(&(), |callback| callback(cx));
})
.log_err();
}
}));
platform_window.on_input({
let mut cx = cx.to_async();
Box::new(move |event| {
handle
.update(&mut cx, |_, cx| cx.dispatch_event(event))
.log_err()
.unwrap_or(true)
})
});
Window {
handle,
removed: false,
platform_window,
display_id,
sprite_atlas,
rem_size: px(16.),
content_size,
layout_engine: TaffyLayoutEngine::new(),
root_view: None,
element_id_stack: GlobalElementId::default(),
prev_frame_element_states: HashMap::default(),
element_states: HashMap::default(),
prev_frame_key_matchers: HashMap::default(),
key_matchers: HashMap::default(),
z_index_stack: StackingOrder(SmallVec::new()),
content_mask_stack: Vec::new(),
element_offset_stack: Vec::new(),
mouse_listeners: HashMap::default(),
key_dispatch_stack: Vec::new(),
freeze_key_dispatch_stack: false,
focus_stack: Vec::new(),
focus_parents_by_child: HashMap::default(),
focus_listeners: Vec::new(),
focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
default_prevented: true,
mouse_position,
scale_factor,
bounds,
bounds_observers: SubscriberSet::new(),
active: false,
activation_observers: SubscriberSet::new(),
scene_builder: SceneBuilder::new(),
dirty: true,
last_blur: None,
focus: None,
}
}
}
/// When constructing the element tree, we maintain a stack of key dispatch frames until we
/// find the focused element. We interleave key listeners with dispatch contexts so we can use the
/// contexts when matching key events against the keymap.
enum KeyDispatchStackFrame {
Listener {
event_type: TypeId,
listener: AnyKeyListener,
},
Context(DispatchContext),
}
/// Indicates which region of the window is visible. Content falling outside of this mask will not be
/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
/// to leave room to support more complex shapes in the future.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
#[repr(C)]
pub struct ContentMask<P: Clone + Default + Debug> {
pub bounds: Bounds<P>,
}
impl ContentMask<Pixels> {
/// Scale the content mask's pixel units by the given scaling factor.
pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
ContentMask {
bounds: self.bounds.scale(factor),
}
}
/// Intersect the content mask with the given content mask.
pub fn intersect(&self, other: &Self) -> Self {
let bounds = self.bounds.intersect(&other.bounds);
ContentMask { bounds }
}
}
/// Provides access to application state in the context of a single window. Derefs
/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
/// an `AppContext` and call any `AppContext` methods.
pub struct WindowContext<'a> {
pub(crate) app: &'a mut AppContext,
pub(crate) window: &'a mut Window,
}
impl<'a> WindowContext<'a> {
pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
Self { app, window }
}
/// Obtain a handle to the window that belongs to this context.
pub fn window_handle(&self) -> AnyWindowHandle {
self.window.handle
}
/// Mark the window as dirty, scheduling it to be redrawn on the next frame.
pub fn notify(&mut self) {
self.window.dirty = true;
}
/// Close this window.
pub fn remove_window(&mut self) {
self.window.removed = true;
}
/// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
/// for elements rendered within this window.
pub fn focus_handle(&mut self) -> FocusHandle {
FocusHandle::new(&self.window.focus_handles)
}
/// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
pub fn focused(&self) -> Option<FocusHandle> {
self.window
.focus
.and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
}
/// Move focus to the element associated with the given `FocusHandle`.
pub fn focus(&mut self, handle: &FocusHandle) {
if self.window.last_blur.is_none() {
self.window.last_blur = Some(self.window.focus);
}
self.window.focus = Some(handle.id);
self.app.push_effect(Effect::FocusChanged {
window_handle: self.window.handle,
focused: Some(handle.id),
});
self.notify();
}
/// Remove focus from all elements within this context's window.
pub fn blur(&mut self) {
if self.window.last_blur.is_none() {
self.window.last_blur = Some(self.window.focus);
}
self.window.focus = None;
self.app.push_effect(Effect::FocusChanged {
window_handle: self.window.handle,
focused: None,
});
self.notify();
}
/// Schedules the given function to be run at the end of the current effect cycle, allowing entities
/// that are currently on the stack to be returned to the app.
pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
let handle = self.window.handle;
self.app.defer(move |cx| {
handle.update(cx, |_, cx| f(cx)).ok();
});
}
pub fn subscribe<Emitter, E>(
&mut self,
entity: &E,
mut on_event: impl FnMut(E, &Emitter::Event, &mut WindowContext<'_>) + 'static,
) -> Subscription
where
Emitter: EventEmitter,
E: Entity<Emitter>,
{
let entity_id = entity.entity_id();
let entity = entity.downgrade();
let window_handle = self.window.handle;
self.app.event_listeners.insert(
entity_id,
Box::new(move |event, cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&entity) {
let event = event.downcast_ref().expect("invalid event type");
on_event(handle, event, cx);
true
} else {
false
}
})
.unwrap_or(false)
}),
)
}
/// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
/// await points in async code.
pub fn to_async(&self) -> AsyncWindowContext {
AsyncWindowContext::new(self.app.to_async(), self.window.handle)
}
/// Schedule the given closure to be run directly after the current frame is rendered.
pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
let handle = self.window.handle;
let display_id = self.window.display_id;
if !self.frame_consumers.contains_key(&display_id) {
let (tx, mut rx) = mpsc::unbounded::<()>();
self.platform.set_display_link_output_callback(
display_id,
Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())),
);
let consumer_task = self.app.spawn(|cx| async move {
while rx.next().await.is_some() {
cx.update(|cx| {
for callback in cx
.next_frame_callbacks
.get_mut(&display_id)
.unwrap()
.drain(..)
.collect::<SmallVec<[_; 32]>>()
{
callback(cx);
}
})
.ok();
// Flush effects, then stop the display link if no new next_frame_callbacks have been added.
cx.update(|cx| {
if cx.next_frame_callbacks.is_empty() {
cx.platform.stop_display_link(display_id);
}
})
.ok();
}
});
self.frame_consumers.insert(display_id, consumer_task);
}
if self.next_frame_callbacks.is_empty() {
self.platform.start_display_link(display_id);
}
self.next_frame_callbacks
.entry(display_id)
.or_default()
.push(Box::new(move |cx: &mut AppContext| {
cx.update_window(handle, |_root_view, cx| callback(cx)).ok();
}));
}
/// Spawn the future returned by the given closure on the application thread pool.
/// The closure is provided a handle to the current window and an `AsyncWindowContext` for
/// use within your future.
pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
where
R: 'static,
Fut: Future<Output = R> + 'static,
{
self.app
.spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
}
/// Update the global of the given type. The given closure is given simultaneous mutable
/// access both to the global and the context.
pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
where
G: 'static,
{
let mut global = self.app.lease_global::<G>();
let result = f(&mut global, self);
self.app.end_global_lease(global);
result
}
/// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
/// layout is being requested, along with the layout ids of any children. This method is called during
/// calls to the `Element::layout` trait method and enables any element to participate in layout.
pub fn request_layout(
&mut self,
style: &Style,
children: impl IntoIterator<Item = LayoutId>,
) -> LayoutId {
self.app.layout_id_buffer.clear();
self.app.layout_id_buffer.extend(children.into_iter());
let rem_size = self.rem_size();
self.window
.layout_engine
.request_layout(style, rem_size, &self.app.layout_id_buffer)
}
/// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
/// this variant takes a function that is invoked during layout so you can use arbitrary logic to
/// determine the element's size. One place this is used internally is when measuring text.
///
/// The given closure is invoked at layout time with the known dimensions and available space and
/// returns a `Size`.
pub fn request_measured_layout<
F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>) -> Size<Pixels> + Send + Sync + 'static,
>(
&mut self,
style: Style,
rem_size: Pixels,
measure: F,
) -> LayoutId {
self.window
.layout_engine
.request_measured_layout(style, rem_size, measure)
}
/// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
/// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
/// in order to pass your element its `Bounds` automatically.
pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
let mut bounds = self
.window
.layout_engine
.layout_bounds(layout_id)
.map(Into::into);
bounds.origin += self.element_offset();
bounds
}
fn window_bounds_changed(&mut self) {
self.window.scale_factor = self.window.platform_window.scale_factor();
self.window.content_size = self.window.platform_window.content_size();
self.window.bounds = self.window.platform_window.bounds();
self.window.display_id = self.window.platform_window.display().id();
self.window.dirty = true;
self.window
.bounds_observers
.clone()
.retain(&(), |callback| callback(self));
}
pub fn window_bounds(&self) -> WindowBounds {
self.window.bounds
}
pub fn is_window_active(&self) -> bool {
self.window.active
}
pub fn zoom_window(&self) {
self.window.platform_window.zoom();
}
pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
self.platform
.displays()
.into_iter()
.find(|display| display.id() == self.window.display_id)
}
/// The scale factor of the display associated with the window. For example, it could
/// return 2.0 for a "retina" display, indicating that each logical pixel should actually
/// be rendered as two pixels on screen.
pub fn scale_factor(&self) -> f32 {
self.window.scale_factor
}
/// The size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn rem_size(&self) -> Pixels {
self.window.rem_size
}
/// Sets the size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
self.window.rem_size = rem_size.into();
}
/// The line height associated with the current text style.
pub fn line_height(&self) -> Pixels {
let rem_size = self.rem_size();
let text_style = self.text_style();
text_style
.line_height
.to_pixels(text_style.font_size.into(), rem_size)
}
/// Call to prevent the default action of an event. Currently only used to prevent
/// parent elements from becoming focused on mouse down.
pub fn prevent_default(&mut self) {
self.window.default_prevented = true;
}
/// Obtain whether default has been prevented for the event currently being dispatched.
pub fn default_prevented(&self) -> bool {
self.window.default_prevented
}
/// Register a mouse event listener on the window for the current frame. The type of event
/// is determined by the first parameter of the given listener. When the next frame is rendered
/// the listener will be cleared.
///
/// This is a fairly low-level method, so prefer using event handlers on elements unless you have
/// a specific need to register a global listener.
pub fn on_mouse_event<Event: 'static>(
&mut self,
handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
) {
let order = self.window.z_index_stack.clone();
self.window
.mouse_listeners
.entry(TypeId::of::<Event>())
.or_default()
.push((
order,
Box::new(move |event: &dyn Any, phase, cx| {
handler(event.downcast_ref().unwrap(), phase, cx)
}),
))
}
/// The position of the mouse relative to the window.
pub fn mouse_position(&self) -> Point<Pixels> {
self.window.mouse_position
}
/// Called during painting to invoke the given closure in a new stacking context. The given
/// z-index is interpreted relative to the previous call to `stack`.
pub fn stack<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
self.window.z_index_stack.push(z_index);
let result = f(self);
self.window.z_index_stack.pop();
result
}
/// Paint one or more drop shadows into the scene for the current frame at the current z-index.
pub fn paint_shadows(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
shadows: &[BoxShadow],
) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
let window = &mut *self.window;
for shadow in shadows {
let mut shadow_bounds = bounds;
shadow_bounds.origin += shadow.offset;
shadow_bounds.dilate(shadow.spread_radius);
window.scene_builder.insert(
&window.z_index_stack,
Shadow {
order: 0,
bounds: shadow_bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
corner_radii: corner_radii.scale(scale_factor),
color: shadow.color,
blur_radius: shadow.blur_radius.scale(scale_factor),
},
);
}
}
/// Paint one or more quads into the scene for the current frame at the current stacking context.
/// Quads are colored rectangular regions with an optional background, border, and corner radius.
pub fn paint_quad(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
background: impl Into<Hsla>,
border_widths: Edges<Pixels>,
border_color: impl Into<Hsla>,
) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
let window = &mut *self.window;
window.scene_builder.insert(
&window.z_index_stack,
Quad {
order: 0,
bounds: bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
background: background.into(),
border_color: border_color.into(),
corner_radii: corner_radii.scale(scale_factor),
border_widths: border_widths.scale(scale_factor),
},
);
}
/// Paint the given `Path` into the scene for the current frame at the current z-index.
pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
let scale_factor = self.scale_factor();
let content_mask = self.content_mask();
path.content_mask = content_mask;
path.color = color.into();
let window = &mut *self.window;
window
.scene_builder
.insert(&window.z_index_stack, path.scale(scale_factor));
}
/// Paint an underline into the scene for the current frame at the current z-index.
pub fn paint_underline(
&mut self,
origin: Point<Pixels>,
width: Pixels,
style: &UnderlineStyle,
) -> Result<()> {
let scale_factor = self.scale_factor();
let height = if style.wavy {
style.thickness * 3.
} else {
style.thickness
};
let bounds = Bounds {
origin,
size: size(width, height),
};
let content_mask = self.content_mask();
let window = &mut *self.window;
window.scene_builder.insert(
&window.z_index_stack,
Underline {
order: 0,
bounds: bounds.scale(scale_factor),
content_mask: content_mask.scale(scale_factor),
thickness: style.thickness.scale(scale_factor),
color: style.color.unwrap_or_default(),
wavy: style.wavy,
},
);
Ok(())
}
/// Paint a monochrome (non-emoji) glyph into the scene for the current frame at the current z-index.
pub fn paint_glyph(
&mut self,
origin: Point<Pixels>,
font_id: FontId,
glyph_id: GlyphId,
font_size: Pixels,
color: Hsla,
) -> Result<()> {
let scale_factor = self.scale_factor();
let glyph_origin = origin.scale(scale_factor);
let subpixel_variant = Point {
x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
};
let params = RenderGlyphParams {
font_id,
glyph_id,
font_size,
subpixel_variant,
scale_factor,
is_emoji: false,
};
let raster_bounds = self.text_system().raster_bounds(&params)?;
if !raster_bounds.is_zero() {
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
Ok((size, Cow::Owned(bytes)))
})?;
let bounds = Bounds {
origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
size: tile.bounds.size.map(Into::into),
};
let content_mask = self.content_mask().scale(scale_factor);
let window = &mut *self.window;
window.scene_builder.insert(
&window.z_index_stack,
MonochromeSprite {
order: 0,
bounds,
content_mask,
color,
tile,
},
);
}
Ok(())
}
/// Paint an emoji glyph into the scene for the current frame at the current z-index.
pub fn paint_emoji(
&mut self,
origin: Point<Pixels>,
font_id: FontId,
glyph_id: GlyphId,
font_size: Pixels,
) -> Result<()> {
let scale_factor = self.scale_factor();
let glyph_origin = origin.scale(scale_factor);
let params = RenderGlyphParams {
font_id,
glyph_id,
font_size,
// We don't render emojis with subpixel variants.
subpixel_variant: Default::default(),
scale_factor,
is_emoji: true,
};
let raster_bounds = self.text_system().raster_bounds(&params)?;
if !raster_bounds.is_zero() {
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
Ok((size, Cow::Owned(bytes)))
})?;
let bounds = Bounds {
origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
size: tile.bounds.size.map(Into::into),
};
let content_mask = self.content_mask().scale(scale_factor);
let window = &mut *self.window;
window.scene_builder.insert(
&window.z_index_stack,
PolychromeSprite {
order: 0,
bounds,
corner_radii: Default::default(),
content_mask,
tile,
grayscale: false,
},
);
}
Ok(())
}
/// Paint a monochrome SVG into the scene for the current frame at the current stacking context.
pub fn paint_svg(
&mut self,
bounds: Bounds<Pixels>,
path: SharedString,
color: Hsla,
) -> Result<()> {
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
// Render the SVG at twice the size to get a higher quality result.
let params = RenderSvgParams {
path,
size: bounds
.size
.map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
};
let tile =
self.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
let bytes = self.svg_renderer.render(&params)?;
Ok((params.size, Cow::Owned(bytes)))
})?;
let content_mask = self.content_mask().scale(scale_factor);
let window = &mut *self.window;
window.scene_builder.insert(
&window.z_index_stack,
MonochromeSprite {
order: 0,
bounds,
content_mask,
color,
tile,
},
);
Ok(())
}
/// Paint an image into the scene for the current frame at the current z-index.
pub fn paint_image(
&mut self,
bounds: Bounds<Pixels>,
corner_radii: Corners<Pixels>,
data: Arc<ImageData>,
grayscale: bool,
) -> Result<()> {
let scale_factor = self.scale_factor();
let bounds = bounds.scale(scale_factor);
let params = RenderImageParams { image_id: data.id };
let tile = self
.window
.sprite_atlas
.get_or_insert_with(&params.clone().into(), &mut || {
Ok((data.size(), Cow::Borrowed(data.as_bytes())))
})?;
let content_mask = self.content_mask().scale(scale_factor);
let corner_radii = corner_radii.scale(scale_factor);
let window = &mut *self.window;
window.scene_builder.insert(
&window.z_index_stack,
PolychromeSprite {
order: 0,
bounds,
content_mask,
corner_radii,
tile,
grayscale,
},
);
Ok(())
}
/// Draw pixels to the display for this window based on the contents of its scene.
pub(crate) fn draw(&mut self) {
let root_view = self.window.root_view.take().unwrap();
self.start_frame();
self.stack(0, |cx| {
let available_space = cx.window.content_size.map(Into::into);
root_view.draw(available_space, cx);
});
if let Some(active_drag) = self.app.active_drag.take() {
self.stack(1, |cx| {
let offset = cx.mouse_position() - active_drag.cursor_offset;
cx.with_element_offset(Some(offset), |cx| {
let available_space =
size(AvailableSpace::MinContent, AvailableSpace::MinContent);
active_drag.view.draw(available_space, cx);
cx.active_drag = Some(active_drag);
});
});
}
self.window.root_view = Some(root_view);
let scene = self.window.scene_builder.build();
self.window.platform_window.draw(scene);
self.window.dirty = false;
}
fn start_frame(&mut self) {
self.text_system().start_frame();
let window = &mut *self.window;
// Move the current frame element states to the previous frame.
// The new empty element states map will be populated for any element states we
// reference during the upcoming frame.
mem::swap(
&mut window.element_states,
&mut window.prev_frame_element_states,
);
window.element_states.clear();
// Make the current key matchers the previous, and then clear the current.
// An empty key matcher map will be created for every identified element in the
// upcoming frame.
mem::swap(
&mut window.key_matchers,
&mut window.prev_frame_key_matchers,
);
window.key_matchers.clear();
// Clear mouse event listeners, because elements add new element listeners
// when the upcoming frame is painted.
window.mouse_listeners.values_mut().for_each(Vec::clear);
// Clear focus state, because we determine what is focused when the new elements
// in the upcoming frame are initialized.
window.focus_listeners.clear();
window.key_dispatch_stack.clear();
window.focus_parents_by_child.clear();
window.freeze_key_dispatch_stack = false;
}
/// Dispatch a mouse or keyboard event on the window.
fn dispatch_event(&mut self, event: InputEvent) -> bool {
let event = match event {
// Track the mouse position with our own state, since accessing the platform
// API for the mouse position can only occur on the main thread.
InputEvent::MouseMove(mouse_move) => {
self.window.mouse_position = mouse_move.position;
InputEvent::MouseMove(mouse_move)
}
// Translate dragging and dropping of external files from the operating system
// to internal drag and drop events.
InputEvent::FileDrop(file_drop) => match file_drop {
FileDropEvent::Entered { position, files } => {
self.window.mouse_position = position;
if self.active_drag.is_none() {
self.active_drag = Some(AnyDrag {
view: self.build_view(|_| files).into(),
cursor_offset: position,
});
}
InputEvent::MouseDown(MouseDownEvent {
position,
button: MouseButton::Left,
click_count: 1,
modifiers: Modifiers::default(),
})
}
FileDropEvent::Pending { position } => {
self.window.mouse_position = position;
InputEvent::MouseMove(MouseMoveEvent {
position,
pressed_button: Some(MouseButton::Left),
modifiers: Modifiers::default(),
})
}
FileDropEvent::Submit { position } => {
self.window.mouse_position = position;
InputEvent::MouseUp(MouseUpEvent {
button: MouseButton::Left,
position,
modifiers: Modifiers::default(),
click_count: 1,
})
}
FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
button: MouseButton::Left,
position: Point::default(),
modifiers: Modifiers::default(),
click_count: 1,
}),
},
_ => event,
};
if let Some(any_mouse_event) = event.mouse_event() {
// Handlers may set this to false by calling `stop_propagation`
self.app.propagate_event = true;
self.window.default_prevented = false;
if let Some(mut handlers) = self
.window
.mouse_listeners
.remove(&any_mouse_event.type_id())
{
// Because handlers may add other handlers, we sort every time.
handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
// Capture phase, events bubble from back to front. Handlers for this phase are used for
// special purposes, such as detecting events outside of a given Bounds.
for (_, handler) in &handlers {
handler(any_mouse_event, DispatchPhase::Capture, self);
if !self.app.propagate_event {
break;
}
}
// Bubble phase, where most normal handlers do their work.
if self.app.propagate_event {
for (_, handler) in handlers.iter().rev() {
handler(any_mouse_event, DispatchPhase::Bubble, self);
if !self.app.propagate_event {
break;
}
}
}
if self.app.propagate_event
&& any_mouse_event.downcast_ref::<MouseUpEvent>().is_some()
{
self.active_drag = None;
}
// Just in case any handlers added new handlers, which is weird, but possible.
handlers.extend(
self.window
.mouse_listeners
.get_mut(&any_mouse_event.type_id())
.into_iter()
.flat_map(|handlers| handlers.drain(..)),
);
self.window
.mouse_listeners
.insert(any_mouse_event.type_id(), handlers);
}
} else if let Some(any_key_event) = event.keyboard_event() {
let key_dispatch_stack = mem::take(&mut self.window.key_dispatch_stack);
let key_event_type = any_key_event.type_id();
let mut context_stack = SmallVec::<[&DispatchContext; 16]>::new();
for (ix, frame) in key_dispatch_stack.iter().enumerate() {
match frame {
KeyDispatchStackFrame::Listener {
event_type,
listener,
} => {
if key_event_type == *event_type {
if let Some(action) = listener(
any_key_event,
&context_stack,
DispatchPhase::Capture,
self,
) {
self.dispatch_action(action, &key_dispatch_stack[..ix]);
}
if !self.app.propagate_event {
break;
}
}
}
KeyDispatchStackFrame::Context(context) => {
context_stack.push(&context);
}
}
}
if self.app.propagate_event {
for (ix, frame) in key_dispatch_stack.iter().enumerate().rev() {
match frame {
KeyDispatchStackFrame::Listener {
event_type,
listener,
} => {
if key_event_type == *event_type {
if let Some(action) = listener(
any_key_event,
&context_stack,
DispatchPhase::Bubble,
self,
) {
self.dispatch_action(action, &key_dispatch_stack[..ix]);
}
if !self.app.propagate_event {
break;
}
}
}
KeyDispatchStackFrame::Context(_) => {
context_stack.pop();
}
}
}
}
drop(context_stack);
self.window.key_dispatch_stack = key_dispatch_stack;
}
true
}
/// Attempt to map a keystroke to an action based on the keymap.
pub fn match_keystroke(
&mut self,
element_id: &GlobalElementId,
keystroke: &Keystroke,
context_stack: &[&DispatchContext],
) -> KeyMatch {
let key_match = self
.window
.key_matchers
.get_mut(element_id)
.unwrap()
.match_keystroke(keystroke, context_stack);
if key_match.is_some() {
for matcher in self.window.key_matchers.values_mut() {
matcher.clear_pending();
}
}
key_match
}
/// Register the given handler to be invoked whenever the global of the given type
/// is updated.
pub fn observe_global<G: 'static>(
&mut self,
f: impl Fn(&mut WindowContext<'_>) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
self.global_observers.insert(
TypeId::of::<G>(),
Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
)
}
pub fn activate_window(&self) {
self.window.platform_window.activate();
}
pub fn prompt(
&self,
level: PromptLevel,
msg: &str,
answers: &[&str],
) -> oneshot::Receiver<usize> {
self.window.platform_window.prompt(level, msg, answers)
}
fn dispatch_action(
&mut self,
action: Box<dyn Action>,
dispatch_stack: &[KeyDispatchStackFrame],
) {
let action_type = action.as_any().type_id();
if let Some(mut global_listeners) = self.app.global_action_listeners.remove(&action_type) {
for listener in &global_listeners {
listener(action.as_ref(), DispatchPhase::Capture, self);
if !self.app.propagate_event {
break;
}
}
global_listeners.extend(
self.global_action_listeners
.remove(&action_type)
.unwrap_or_default(),
);
self.global_action_listeners
.insert(action_type, global_listeners);
}
if self.app.propagate_event {
for stack_frame in dispatch_stack {
if let KeyDispatchStackFrame::Listener {
event_type,
listener,
} = stack_frame
{
if action_type == *event_type {
listener(action.as_any(), &[], DispatchPhase::Capture, self);
if !self.app.propagate_event {
break;
}
}
}
}
}
if self.app.propagate_event {
for stack_frame in dispatch_stack.iter().rev() {
if let KeyDispatchStackFrame::Listener {
event_type,
listener,
} = stack_frame
{
if action_type == *event_type {
listener(action.as_any(), &[], DispatchPhase::Bubble, self);
if !self.app.propagate_event {
break;
}
}
}
}
}
if self.app.propagate_event {
if let Some(mut global_listeners) =
self.app.global_action_listeners.remove(&action_type)
{
for listener in global_listeners.iter().rev() {
listener(action.as_ref(), DispatchPhase::Bubble, self);
if !self.app.propagate_event {
break;
}
}
global_listeners.extend(
self.global_action_listeners
.remove(&action_type)
.unwrap_or_default(),
);
self.global_action_listeners
.insert(action_type, global_listeners);
}
}
}
}
impl Context for WindowContext<'_> {
type Result<T> = T;
fn build_model<T>(
&mut self,
build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
) -> Model<T>
where
T: 'static,
{
let slot = self.app.entities.reserve();
let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
self.entities.insert(slot, model)
}
fn update_model<T: 'static, R>(
&mut self,
model: &Model<T>,
update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
) -> R {
let mut entity = self.entities.lease(model);
let result = update(
&mut *entity,
&mut ModelContext::new(&mut *self.app, model.downgrade()),
);
self.entities.end_lease(entity);
result
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
where
F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
{
if window == self.window.handle {
let root_view = self.window.root_view.clone().unwrap();
Ok(update(root_view, self))
} else {
window.update(self.app, update)
}
}
}
impl VisualContext for WindowContext<'_> {
fn build_view<V>(
&mut self,
build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
) -> Self::Result<View<V>>
where
V: 'static,
{
let slot = self.app.entities.reserve();
let view = View {
model: slot.clone(),
};
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
let entity = build_view_state(&mut cx);
self.entities.insert(slot, entity);
view
}
/// Update the given view. Prefer calling `View::update` instead, which calls this method.
fn update_view<T: 'static, R>(
&mut self,
view: &View<T>,
update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
) -> Self::Result<R> {
let mut lease = self.app.entities.lease(&view.model);
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
let result = update(&mut *lease, &mut cx);
cx.app.entities.end_lease(lease);
result
}
fn replace_root_view<V>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
) -> Self::Result<View<V>>
where
V: Render,
{
let slot = self.app.entities.reserve();
let view = View {
model: slot.clone(),
};
let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
let entity = build_view(&mut cx);
self.entities.insert(slot, entity);
self.window.root_view = Some(view.clone().into());
view
}
}
impl<'a> std::ops::Deref for WindowContext<'a> {
type Target = AppContext;
fn deref(&self) -> &Self::Target {
&self.app
}
}
impl<'a> std::ops::DerefMut for WindowContext<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.app
}
}
impl<'a> Borrow<AppContext> for WindowContext<'a> {
fn borrow(&self) -> &AppContext {
&self.app
}
}
impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
fn borrow_mut(&mut self) -> &mut AppContext {
&mut self.app
}
}
pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
fn app_mut(&mut self) -> &mut AppContext {
self.borrow_mut()
}
fn window(&self) -> &Window {
self.borrow()
}
fn window_mut(&mut self) -> &mut Window {
self.borrow_mut()
}
/// Pushes the given element id onto the global stack and invokes the given closure
/// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
/// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
/// used to associate state with identified elements across separate frames.
fn with_element_id<R>(
&mut self,
id: impl Into<ElementId>,
f: impl FnOnce(GlobalElementId, &mut Self) -> R,
) -> R {
let keymap = self.app_mut().keymap.clone();
let window = self.window_mut();
window.element_id_stack.push(id.into());
let global_id = window.element_id_stack.clone();
if window.key_matchers.get(&global_id).is_none() {
window.key_matchers.insert(
global_id.clone(),
window
.prev_frame_key_matchers
.remove(&global_id)
.unwrap_or_else(|| KeyMatcher::new(keymap)),
);
}
let result = f(global_id, self);
let window: &mut Window = self.borrow_mut();
window.element_id_stack.pop();
result
}
/// Invoke the given function with the given content mask after intersecting it
/// with the current mask.
fn with_content_mask<R>(
&mut self,
mask: ContentMask<Pixels>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
let mask = mask.intersect(&self.content_mask());
self.window_mut().content_mask_stack.push(mask);
let result = f(self);
self.window_mut().content_mask_stack.pop();
result
}
/// Update the global element offset based on the given offset. This is used to implement
/// scrolling and position drag handles.
fn with_element_offset<R>(
&mut self,
offset: Option<Point<Pixels>>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
let Some(offset) = offset else {
return f(self);
};
let offset = self.element_offset() + offset;
self.window_mut().element_offset_stack.push(offset);
let result = f(self);
self.window_mut().element_offset_stack.pop();
result
}
/// Obtain the current element offset.
fn element_offset(&self) -> Point<Pixels> {
self.window()
.element_offset_stack
.last()
.copied()
.unwrap_or_default()
}
/// Update or intialize state for an element with the given id that lives across multiple
/// frames. If an element with this id existed in the previous frame, its state will be passed
/// to the given closure. The state returned by the closure will be stored so it can be referenced
/// when drawing the next frame.
fn with_element_state<S, R>(
&mut self,
id: ElementId,
f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
) -> R
where
S: 'static,
{
self.with_element_id(id, |global_id, cx| {
if let Some(any) = cx
.window_mut()
.element_states
.remove(&global_id)
.or_else(|| cx.window_mut().prev_frame_element_states.remove(&global_id))
{
// Using the extra inner option to avoid needing to reallocate a new box.
let mut state_box = any
.downcast::<Option<S>>()
.expect("invalid element state type for id");
let state = state_box
.take()
.expect("element state is already on the stack");
let (result, state) = f(Some(state), cx);
state_box.replace(state);
cx.window_mut().element_states.insert(global_id, state_box);
result
} else {
let (result, state) = f(None, cx);
cx.window_mut()
.element_states
.insert(global_id, Box::new(Some(state)));
result
}
})
}
/// Like `with_element_state`, but for situations where the element_id is optional. If the
/// id is `None`, no state will be retrieved or stored.
fn with_optional_element_state<S, R>(
&mut self,
element_id: Option<ElementId>,
f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
) -> R
where
S: 'static,
{
if let Some(element_id) = element_id {
self.with_element_state(element_id, f)
} else {
f(None, self).0
}
}
/// Obtain the current content mask.
fn content_mask(&self) -> ContentMask<Pixels> {
self.window()
.content_mask_stack
.last()
.cloned()
.unwrap_or_else(|| ContentMask {
bounds: Bounds {
origin: Point::default(),
size: self.window().content_size,
},
})
}
/// The size of an em for the base font of the application. Adjusting this value allows the
/// UI to scale, just like zooming a web page.
fn rem_size(&self) -> Pixels {
self.window().rem_size
}
}
impl Borrow<Window> for WindowContext<'_> {
fn borrow(&self) -> &Window {
&self.window
}
}
impl BorrowMut<Window> for WindowContext<'_> {
fn borrow_mut(&mut self) -> &mut Window {
&mut self.window
}
}
impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
pub struct ViewContext<'a, V> {
window_cx: WindowContext<'a>,
view: &'a View<V>,
}
impl<V> Borrow<AppContext> for ViewContext<'_, V> {
fn borrow(&self) -> &AppContext {
&*self.window_cx.app
}
}
impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
fn borrow_mut(&mut self) -> &mut AppContext {
&mut *self.window_cx.app
}
}
impl<V> Borrow<Window> for ViewContext<'_, V> {
fn borrow(&self) -> &Window {
&*self.window_cx.window
}
}
impl<V> BorrowMut<Window> for ViewContext<'_, V> {
fn borrow_mut(&mut self) -> &mut Window {
&mut *self.window_cx.window
}
}
impl<'a, V: 'static> ViewContext<'a, V> {
pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
Self {
window_cx: WindowContext::new(app, window),
view,
}
}
pub fn view(&self) -> View<V> {
self.view.clone()
}
pub fn model(&self) -> Model<V> {
self.view.model.clone()
}
pub fn stack<R>(&mut self, order: u32, f: impl FnOnce(&mut Self) -> R) -> R {
self.window.z_index_stack.push(order);
let result = f(self);
self.window.z_index_stack.pop();
result
}
pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
where
V: 'static,
{
let view = self.view();
self.window_cx.on_next_frame(move |cx| view.update(cx, f));
}
/// Schedules the given function to be run at the end of the current effect cycle, allowing entities
/// that are currently on the stack to be returned to the app.
pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
let view = self.view().downgrade();
self.window_cx.defer(move |cx| {
view.update(cx, f).ok();
});
}
pub fn observe<V2, E>(
&mut self,
entity: &E,
mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V2: 'static,
V: 'static,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let entity = entity.downgrade();
let window_handle = self.window.handle;
self.app.observers.insert(
entity_id,
Box::new(move |cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&entity) {
view.update(cx, |this, cx| on_notify(this, handle, cx))
.is_ok()
} else {
false
}
})
.unwrap_or(false)
}),
)
}
pub fn subscribe<V2, E>(
&mut self,
entity: &E,
mut on_event: impl FnMut(&mut V, E, &V2::Event, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V2: EventEmitter,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let handle = entity.downgrade();
let window_handle = self.window.handle;
self.app.event_listeners.insert(
entity_id,
Box::new(move |event, cx| {
window_handle
.update(cx, |_, cx| {
if let Some(handle) = E::upgrade_from(&handle) {
let event = event.downcast_ref().expect("invalid event type");
view.update(cx, |this, cx| on_event(this, handle, event, cx))
.is_ok()
} else {
false
}
})
.unwrap_or(false)
}),
)
}
pub fn on_release(
&mut self,
on_release: impl FnOnce(&mut V, &mut WindowContext) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
self.app.release_listeners.insert(
self.view.model.entity_id,
Box::new(move |this, cx| {
let this = this.downcast_mut().expect("invalid entity type");
let _ = window_handle.update(cx, |_, cx| on_release(this, cx));
}),
)
}
pub fn observe_release<V2, E>(
&mut self,
entity: &E,
mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
) -> Subscription
where
V: 'static,
V2: 'static,
E: Entity<V2>,
{
let view = self.view().downgrade();
let entity_id = entity.entity_id();
let window_handle = self.window.handle;
self.app.release_listeners.insert(
entity_id,
Box::new(move |entity, cx| {
let entity = entity.downcast_mut().expect("invalid entity type");
let _ = window_handle.update(cx, |_, cx| {
view.update(cx, |this, cx| on_release(this, entity, cx))
});
}),
)
}
pub fn notify(&mut self) {
self.window_cx.notify();
self.window_cx.app.push_effect(Effect::Notify {
emitter: self.view.model.entity_id,
});
}
pub fn observe_window_bounds(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
self.window.bounds_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
)
}
pub fn observe_window_activation(
&mut self,
mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
) -> Subscription {
let view = self.view.downgrade();
self.window.activation_observers.insert(
(),
Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
)
}
pub fn on_focus_changed(
&mut self,
listener: impl Fn(&mut V, &FocusEvent, &mut ViewContext<V>) + 'static,
) {
let handle = self.view().downgrade();
self.window.focus_listeners.push(Box::new(move |event, cx| {
handle
.update(cx, |view, cx| listener(view, event, cx))
.log_err();
}));
}
pub fn with_key_listeners<R>(
&mut self,
key_listeners: impl IntoIterator<Item = (TypeId, KeyListener<V>)>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
let old_stack_len = self.window.key_dispatch_stack.len();
if !self.window.freeze_key_dispatch_stack {
for (event_type, listener) in key_listeners {
let handle = self.view().downgrade();
let listener = Box::new(
move |event: &dyn Any,
context_stack: &[&DispatchContext],
phase: DispatchPhase,
cx: &mut WindowContext<'_>| {
handle
.update(cx, |view, cx| {
listener(view, event, context_stack, phase, cx)
})
.log_err()
.flatten()
},
);
self.window
.key_dispatch_stack
.push(KeyDispatchStackFrame::Listener {
event_type,
listener,
});
}
}
let result = f(self);
if !self.window.freeze_key_dispatch_stack {
self.window.key_dispatch_stack.truncate(old_stack_len);
}
result
}
pub fn with_key_dispatch_context<R>(
&mut self,
context: DispatchContext,
f: impl FnOnce(&mut Self) -> R,
) -> R {
if context.is_empty() {
return f(self);
}
if !self.window.freeze_key_dispatch_stack {
self.window
.key_dispatch_stack
.push(KeyDispatchStackFrame::Context(context));
}
let result = f(self);
if !self.window.freeze_key_dispatch_stack {
self.window.key_dispatch_stack.pop();
}
result
}
pub fn with_focus<R>(
&mut self,
focus_handle: FocusHandle,
f: impl FnOnce(&mut Self) -> R,
) -> R {
if let Some(parent_focus_id) = self.window.focus_stack.last().copied() {
self.window
.focus_parents_by_child
.insert(focus_handle.id, parent_focus_id);
}
self.window.focus_stack.push(focus_handle.id);
if Some(focus_handle.id) == self.window.focus {
self.window.freeze_key_dispatch_stack = true;
}
let result = f(self);
self.window.focus_stack.pop();
result
}
pub fn spawn<Fut, R>(
&mut self,
f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
) -> Task<R>
where
R: 'static,
Fut: Future<Output = R> + 'static,
{
let view = self.view().downgrade();
self.window_cx.spawn(|cx| f(view, cx))
}
pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
where
G: 'static,
{
let mut global = self.app.lease_global::<G>();
let result = f(&mut global, self);
self.app.end_global_lease(global);
result
}
pub fn observe_global<G: 'static>(
&mut self,
f: impl Fn(&mut V, &mut ViewContext<'_, V>) + 'static,
) -> Subscription {
let window_handle = self.window.handle;
let view = self.view().downgrade();
self.global_observers.insert(
TypeId::of::<G>(),
Box::new(move |cx| {
window_handle
.update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
.unwrap_or(false)
}),
)
}
pub fn on_mouse_event<Event: 'static>(
&mut self,
handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
) {
let handle = self.view();
self.window_cx.on_mouse_event(move |event, phase, cx| {
handle.update(cx, |view, cx| {
handler(view, event, phase, cx);
})
});
}
}
impl<V> ViewContext<'_, V>
where
V: EventEmitter,
V::Event: 'static,
{
pub fn emit(&mut self, event: V::Event) {
let emitter = self.view.model.entity_id;
self.app.push_effect(Effect::Emit {
emitter,
event: Box::new(event),
});
}
}
impl<V> Context for ViewContext<'_, V> {
type Result<U> = U;
fn build_model<T: 'static>(
&mut self,
build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
) -> Model<T> {
self.window_cx.build_model(build_model)
}
fn update_model<T: 'static, R>(
&mut self,
model: &Model<T>,
update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
) -> R {
self.window_cx.update_model(model, update)
}
fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
where
F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
{
self.window_cx.update_window(window, update)
}
}
impl<V: 'static> VisualContext for ViewContext<'_, V> {
fn build_view<W: 'static>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
) -> Self::Result<View<W>> {
self.window_cx.build_view(build_view)
}
fn update_view<V2: 'static, R>(
&mut self,
view: &View<V2>,
update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
) -> Self::Result<R> {
self.window_cx.update_view(view, update)
}
fn replace_root_view<W>(
&mut self,
build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
) -> Self::Result<View<W>>
where
W: Render,
{
self.window_cx.replace_root_view(build_view)
}
}
impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
type Target = WindowContext<'a>;
fn deref(&self) -> &Self::Target {
&self.window_cx
}
}
impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.window_cx
}
}
// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
slotmap::new_key_type! { pub struct WindowId; }
impl WindowId {
pub fn as_u64(&self) -> u64 {
self.0.as_ffi()
}
}
#[derive(Deref, DerefMut)]
pub struct WindowHandle<V> {
#[deref]
#[deref_mut]
pub(crate) any_handle: AnyWindowHandle,
state_type: PhantomData<V>,
}
impl<V: 'static + Render> WindowHandle<V> {
pub fn new(id: WindowId) -> Self {
WindowHandle {
any_handle: AnyWindowHandle {
id,
state_type: TypeId::of::<V>(),
},
state_type: PhantomData,
}
}
pub fn update<C, R>(
self,
cx: &mut C,
update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
) -> Result<R>
where
C: Context,
{
cx.update_window(self.any_handle, |root_view, cx| {
let view = root_view
.downcast::<V>()
.map_err(|_| anyhow!("the type of the window's root view has changed"))?;
Ok(cx.update_view(&view, update))
})?
}
}
impl<V> Copy for WindowHandle<V> {}
impl<V> Clone for WindowHandle<V> {
fn clone(&self) -> Self {
WindowHandle {
any_handle: self.any_handle,
state_type: PhantomData,
}
}
}
impl<V> PartialEq for WindowHandle<V> {
fn eq(&self, other: &Self) -> bool {
self.any_handle == other.any_handle
}
}
impl<V> Eq for WindowHandle<V> {}
impl<V> Hash for WindowHandle<V> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.any_handle.hash(state);
}
}
impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
fn into(self) -> AnyWindowHandle {
self.any_handle
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct AnyWindowHandle {
pub(crate) id: WindowId,
state_type: TypeId,
}
impl AnyWindowHandle {
pub fn window_id(&self) -> WindowId {
self.id
}
pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
if TypeId::of::<T>() == self.state_type {
Some(WindowHandle {
any_handle: *self,
state_type: PhantomData,
})
} else {
None
}
}
pub fn update<C, R>(
self,
cx: &mut C,
update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
) -> Result<R>
where
C: Context,
{
cx.update_window(self, update)
}
}
#[cfg(any(test, feature = "test-support"))]
impl From<SmallVec<[u32; 16]>> for StackingOrder {
fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
StackingOrder(small_vec)
}
}
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum ElementId {
View(EntityId),
Number(usize),
Name(SharedString),
FocusHandle(FocusId),
}
impl From<EntityId> for ElementId {
fn from(id: EntityId) -> Self {
ElementId::View(id)
}
}
impl From<usize> for ElementId {
fn from(id: usize) -> Self {
ElementId::Number(id)
}
}
impl From<i32> for ElementId {
fn from(id: i32) -> Self {
Self::Number(id as usize)
}
}
impl From<SharedString> for ElementId {
fn from(name: SharedString) -> Self {
ElementId::Name(name)
}
}
impl From<&'static str> for ElementId {
fn from(name: &'static str) -> Self {
ElementId::Name(name.into())
}
}
impl<'a> From<&'a FocusHandle> for ElementId {
fn from(handle: &'a FocusHandle) -> Self {
ElementId::FocusHandle(handle.id)
}
}